• Title/Summary/Keyword: Optical lattice

검색결과 311건 처리시간 0.019초

Propagation Dynamics of a Finite-energy Airy Beam with Sinusoidal Phase in Optical Lattice

  • Huang, Xiaoyuan;Chen, Manna;Zhang, Geng;Liu, Ye;Wang, Hongcheng
    • Current Optics and Photonics
    • /
    • 제4권4호
    • /
    • pp.267-272
    • /
    • 2020
  • The propagation of a truncated Airy beam with spatial phase modulation (SPM) is investigated in Kerr nonlinearity with an optical lattice. Before the truncated Airy beam enters the optical lattice, a sinusoidal phase is introduced on the wave-front of the beam. The effect of the spatial phase modulation and optical lattice on propagation behavior is analyzed by direct numerical simulation. It is found that the propagation direction of a truncated Airy beam can be effectively controlled by adjusting the values of phase shift. The effects of optical amplitude, truncation factor, spatial modulation frequency, lattice period and lattice depth on the propagation are discussed in detail. By choosing a high modulation depth, the finite-energy Airy beam can be deflected with a large deflection angle in an optical lattice.

광신호 에너지 최적화를 위한 IIR 격자형 광파이버필터 설계 (Optical IIR lattice fiber filter design for optimum of optical signal energy)

  • 이채욱;김신환
    • 전자공학회논문지B
    • /
    • 제32B권11호
    • /
    • pp.1481-1488
    • /
    • 1995
  • Due to the low loss, broadband and accurate short time delay properties of optical fiber, it has attracted as a delay medium for high speed and broad-band signal processing. In this paper, we consider the coherent optical fiber filter of IIR lattice structure, which uses coherent light sources and consists of directional couplers whose coupling coefficients are restricted between 0 and 1. Considering restrictions of directional coupler, the design formulae and condition for realibility of optical fiber filter of IIR lattice structure which makes the optimal use of optical signal energy are derived.

  • PDF

격자형 광파이버필터의 최적설계에 관한 연구 (An Optimal Design Method for Optical Fiber Filter of Lattice Structure)

  • 이채욱;문병현;우홍채
    • 전자공학회논문지B
    • /
    • 제30B권5호
    • /
    • pp.34-42
    • /
    • 1993
  • Due to the low loss, broadband and accurate short time delay properties of optical fiber, it has attracted as a delay medium for high speed and broad-band signal processing. In this paper, we consider the coherent optical fiber filter of lattice structure, which uses coherent light sources and consists of directional couplers and optical fiber delay elements.The differences between the optical fiber filter and the ordinary digital filter are 1) the coupling coefficients of directional couplers are restricted between 0 and 1. 2) the optical signal is divided into ${j\sqrt{a}}and\;{j\sqrt{1-a}}$ at the directional coupler. Considering these restrictions, the design formulae and condition of realibility for optical fiber filter of lattice structure which makes the optimal use of optical signal energy are derived.

  • PDF

제약조건이 필요없는 격자형 광섬유필터의 설계법 (A design method for optical fiber filter of lattice structure without constraints)

  • 이채욱;문병현
    • 전자공학회논문지B
    • /
    • 제33B권12호
    • /
    • pp.31-44
    • /
    • 1996
  • Since optical delay line signal processing which utilizes optical fiber as delay line elements can provide high speed and broadband signal processing, the optical delay line signal processing has numerous applications. Recently, many research papers which optical delay line signal processing techniques are being applied to OCDMA are published. The author has published paper on the design method for optical fiber filters of lattice structure. However, the previous design method does not realize the transfer function all the time. It can be realized with constraints. In this paper, we propose the design method that can realize the transfer function all the time without any constraints for the optical fiber filter of lattice structure.

  • PDF

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

Design and Performance Analysis of a Multi Wavelength Terahertz Modulator Based on Triple-Lattice Photonic Crystals

  • Ji, Ke;Chen, Heming;Zhou, Wen
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.589-593
    • /
    • 2014
  • Terahertz (THz) communication has important applications in high-speed and ultra broadband wireless access networks. The THz modulator is one of the key devices in a THz communications system. Wavelength division multiplexing (WDM) can expand the capacity of THz communications systems, so research on multi wavelength THz modulators has significant value. By combining photonic-crystal and THz technology, a novel type of multi wavelength THz modulator based on a triple-lattice photonic crystal is proposed in this paper. Compared to a compound-lattice photonic crystal, a triple-lattice photonic crystal has a larger gap width of 0.196. Simulation results show that six beams of THz waves can be modulated simultaneously with high performance. This modulator's extinction ratio is as large as 34.25 dB, its insertion loss is as low as 0.147 dB, and its modulation rate is 2.35 GHz.

광기록 정보저장용 Diffractive Optical Head 제작 연구 (Fabrication technology of the Diffractive Optical Head for optical recoding information storage)

  • 한기평;김태엽;손영준;김약연;백문철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.992-993
    • /
    • 2002
  • We have fabricated the diffractive optical head(DOH) for optical pick up, which one adaptable to a optical recoding information storage. DOH consists of a focusing grating coupler(FGC) and a solid immersion Jens(SIL). FGC is device that the light converge into a focus by surface lattice. FGC have been studied as a potential application of pick up head for the information storage. In this study, FGC was designed and fabricated to make focus near to possible diffraction limit. We also fabricated recording head combined with SIL. The focus was measured in the range of $1.1{\mu}m$ as near to possible diffraction limit in the FGC having a focusing length of $600{\mu}m$ and a lattice area of 500 * $500{\mu}m$.

  • PDF

$OH^-$ 흡수밴드에 의한 $LiNbO_3$ 단결정의 격자결함에 관한 연구 (A study on the lattice defects in $LiNbO_3$ single crystal by crystal by $OH^-$ absorption band)

  • 조용석;강길영;윤종규
    • 한국결정성장학회지
    • /
    • 제8권3호
    • /
    • pp.401-406
    • /
    • 1998
  • LiNbO_3$ 단결정의 광학소자 광도파관 등의 응용을 위하여는 빛의 조사에 따라 굴절률이 변하는 광손상을 극복하여야 한다. 이러한 광손상 극복은 LiNbO_3$ 에 MgO를 첨가한 단결정의 성장과 산처리를 통하여 가능하다. 본 연구에서는 LiNbO_3$ 의 광손상 극복 기구를 이해하기 위하여, FT-IR을 이용하여 LiNbO_3$ 단결정에 MgO 첨가와 산처리가 발생시키는 격자결함의 변화를 OH- 흡수밴드를 통하여 간접적으로 관찰하였다. 또한 액체 헬륨을 이용한 온도강하시 생기는 격자결함의 관찰과 산처리한 시편의 광택연마와 열처리에 따른 격자결함으 조사하였다. MgO 첨가는 LiNbO_3$ 격자내 $Mg_{Nb}^{2+}$ 결함을 발생시켜 광손상 저항을 증가시키며, 산처리는 결정표면의 산소층에 $H^+$이온이 침입하여 격자결함을 발생시키며, 이 격자결함은 $400^{\circ}C$이상에서 열처리하면 $H^+$가 결정내부로 확산하여 들어감을 확인하였다.

  • PDF

Effect of VO(II) Doping on Structural and Optical Properties of Diaquamalonato(1,10-phenanthroline)zinc(II)

  • Hema, Ramesh;Parthipan, Krishnan;Ramachitra, Somasundaram;Balaji, Subramanian
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3547-3552
    • /
    • 2013
  • Single crystal EPR and optical studies of a mixed ligand zinc(II) complex doped with VO(II) ion is carried out to establish the structural properties. The angular variation of vanadyl hyperfine lines indicates a single site, with spin Hamiltonian parameters as: $g_{xx}=1.985$, $g_{yy}=1.979$, $g_{zz}=1.943$; $A_{xx}=8.71$, $A_{yy}=6.41$ and $A_{zz}=17.80$ mT. By comparing the direction cosines of principal g and A values with the direction cosines of metalligand bonds, it has been confirmed that the vanadyl ion has entered the lattice interstitially. The exact interstitial position of VO(II) in host lattice has been calculated using the fractional coordinates of atoms in the host lattice out of many assumptions. The EPR and optical data have been confirmed to obtain various bonding parameters, from which the nature of the bonding in the complex is discussed. FT-IR confirms the formation of structure of host lattice.