• Title/Summary/Keyword: Optical intensity modulation

Search Result 110, Processing Time 0.023 seconds

Defect Detection Method using Human Visual System and MMTF (MMTF와 인간지각 특성을 이용한 결함성분 추출기법)

  • Huh, Kyung-Moo;Joo, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1094-1098
    • /
    • 2013
  • AVI (Automatic Vision Inspection) systems automatically detect defect features and measure their sizes via camera vision. Defect detection is not an easy process because of noises from various sources and optical distortion. In this paper the acquired images from a TFT panel are enhanced with the adoption of an HVS (Human Visual System). A human visual system is more sensitive on the defect area than the illumination components because it has greater sensitivity to variations of intensity. In this paper we modified an MTF (Modulation Transfer Function) in the Wavelet domain and utilized the characteristics of an HVS. The proposed algorithm flattens the inner illumination components while preserving the defect information intact.

Phase calcuation error analysis of 3D shape measurement system using phase-shifted fringe projection method (위상이동 간섭무늬 투영을 이용한 3차원 형상측정 시스템의 위상계산오차 해석)

  • 류현미;김석성;홍석경;연규황
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.182-188
    • /
    • 2002
  • We have analyzed the phase-calculation-error of a three-dimensional shape measurement system using the projection of phase shifted fringe patterns. In this study, we have dealt various errors; an error caused by the variation of quantization levels, an error caused by the defocus of fringe pattern projected images, an error caused by phase-shifting errors, an error caused by the intensity variation of the background and modulation amplitude of fringe pattern projected images during the projection of multiple patterns, an error caused by the distortion of sinusoidal shape of a fringe pattern. The results will contribute to the design of a three-dimensional shape measurment system and give an important meaning to the calculation and the analysis of the accuracy of a system.

Bandwidth Allocation Under Multi-Level Service Guarantees of Downlink in the VLC-OFDM System

  • Liu, Shuangxing;Chi, Xuefen;Zhao, Linlin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.704-715
    • /
    • 2016
  • In this paper, we explore a low-complex bandwidth allocation (BA) scheme with multi-level service guarantees in VLC-OFDM systems. Effective capacity theory, which evaluates wireless channel capacity from a novel view, is utilized to model the system capacity under delay QoS constraints of the link layer. Since intensity modulation of light is used in the system, problems caused by frequency selectivity can be neglected. Then, the BA problem can be formulated as an integer programming problem and it is further relaxed and transformed into a concave one. Lagrangian formulation is used to reformulate the concave problem. Considering the inefficiency of traditional gradient-based schemes and the demand for distributed implementation in local area networks, we localize the global parameters and propose a quasi-distributed quadratic allocation algorithm to provide two-level service guarantees, the first level is QoS oriented, and the second level is QoE oriented. Simulations have shown the efficient performance of the proposed algorithm. The users with more stringent QoS requirements require more subcarriers to guarantee their statistical delay QoS requirements. We also analyze the effect of subcarrier granularity on the aggregate effective capacity via simulations.

Development of an Optical Tissue Clearing Laser Probe System

  • Yeo, Changmin;Kang, Heesung;Bae, Yunjin;Park, Jihoon;Nelson, J. Stuart;Lee, Kyoung-Joung;Jung, Byungjo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.289-295
    • /
    • 2013
  • Although low-level laser therapy (LLLT) has been a valuable therapeutic technology in the clinic, its efficacy may be reduced in deep tissue layers due to strong light scattering which limits the photon density. In order to enhance the photon density in deep tissue layers, this study developed an optical tissue clearing (OTC) laser probe (OTCLP) system which can utilize four different OTC methods: 1) tissue temperature control from 40 to $10^{\circ}C$; 2) laser pulse frequency from 5 to 30 Hz; 3) glycerol injection at a local region; and 4) a combination of the aforementioned three methods. The efficacy of the OTC methods was evaluated and compared by investigating laser beam profiles in ex-vivo porcine skin samples. Results demonstrated that total (peak) intensity at full width at half maximum of laser beam profile when compared to control data was increased: 1) 1.21(1.39)-fold at $10^{\circ}C$; 2) 1.22 (1.49)-fold at a laser pulse frequency of 5 Hz; 3) 1.64 (2.41)-fold with 95% glycerol injection; 4) 1.86 (3.4)-fold with the combination method. In conclusion, the OTCLP system successfully improved the laser photon density in deep tissue layers and may be utilized as a useful tool in LLLT by increasing laser photon density.

Dual Image Sensor and Image Estimation Technique for Multiple Optical Interference Cancellation in High Speed Transmission Visible Light Communication Environment (고속 전송 가시광통신 환경에서의 다중 광 간섭 제거를 위한 듀얼 이미지 센서 및 이미지 추정기법)

  • Han, Doohee;Lee, Kyujin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.480-483
    • /
    • 2018
  • In this paper, we study the interference canceling and image sensing processing technology of multiple light sources for high speed transmission in CMOS sensor based visible light communication system. To improve transmission capacity in optical camera communications via image sensors, different data must be transmitted simultaneously from each LED. However, multiple LED light source environments for high-speed transmission can cause interference between adjacent LEDs. In this case, since the visible light communication system generally uses intensity modulation, when a plurality of LEDs transmit data at the same time, it is difficult to accurately detect the respective LEDs due to the light scattering interference of the adjacent LEDs. In order to solve this problem, the ON / OFF state of many LEDs of the light source is accurately recognized by using a dual CMOS sensor, and the spectral estimation technique and the pixel image signal processing technique of each LED are proposed. This technique can accurately recognize multiple LED pixels and improve the total average bit error rate and throughput of a MISO-VLC system.

  • PDF

Pump Light Power of Wideband Optical Phase Conjugator using HNL-DSF in WDM Systems with MSSI (MSSI 기법을 채택한 WDM 시스템에서 HNL-DSF를 이용한 광대역 광 위상 공액기의 펌프 광 전력)

  • Lee Seong real;Cho Sung eun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3A
    • /
    • pp.168-177
    • /
    • 2005
  • In this paper, we numerically investigated the optimum pump light power resulting best compensation of pulse distortion due to both chromatic dispersion and self phase modulation (SPM) in long-haul 3×40 Gbps wavelength division multiplexing (WDM) systems. We used mid-span spectral inversion (MSSI) method with path-averaged intensity approximation (PAIA) as compensation approach, which have highly nonlinear dispersion shifted fiber (HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that HNL-DSF is an useful nonlinear medium in OPC for wideband WDM transmission, and in order to achieve the excellent compensation the pump light power is selected to equal the conjugated light power into the latter half fiber section with the input light power of WDM channel depending on total transmission length. Also we confirmed that compensation degree of WDM channel with small conversion efficiency is improved by using pump light power increasing power conversion ratio upper than 1.

BATHYMETRIC MODULATION ON WAVE SPECTRA

  • Liu, Cho-Teng;Doong, Dong-Jiing
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.344-347
    • /
    • 2008
  • Ocean surface waves may be modified by ocean current and their observation may be severely distorted if the observer is on a moving platform with changing speed. Tidal current near a sill varies inversely with the water depth, and results spatially inhomogeneous modulation on the surface waves near the sill. For waves propagating upstream, they will encounter stronger current before reaching the sill, and therefore, they will shorten their wavelength with frequency unchanged, increase its amplitude, and it may break if the wave height is larger than 1/7 of the wavelength. These small scale (${\sim}$ 1 km changes is not suitable for satellite radar observation. Spatial distribution of wave-height spectra S(x, y) can not be acquired from wave gauges that are designed for collecting 2-D wave spectra at fixed locations, nor from satellite radar image which is more suitable for observing long swells. Optical images collected from cameras on-board a ship, over high-ground, or onboard an unmanned auto-piloting vehicle (UAV) may have pixel size that is small enough to resolve decimeter-scale short gravity waves. If diffuse sky light is the only source of lighting and it is uniform in camera-viewing directions, then the image intensity is proportional to the surface reflectance R(x, y) of diffuse light, and R is directly related to the surface slope. The slope spectrum and wave-height spectra S(x, y) may then be derived from R(x, y). The results are compared with the in situ measurement of wave spectra over Keelung Sill from a research vessel. The application of this method is for analysis and interpretation of satellite images on studies of current and wave interaction that often require fine scale information of wave-height spectra S(x, y) that changes dynamically with time and space.

  • PDF

A modulated Gaussian pupil derived from diffraction inverse problem approach and the characteristics of the OTF of the system (회절 역문제로 유도한 변조된 Gauss 동함수에 대한 결상계의 OTF)

  • 송영란;이민희;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.95-98
    • /
    • 1997
  • The Gaussian diffraction pattern initially assumed in the diffraction inverse problem is further sharply defined by multiplying $e^{-q{\omega}_0$\mid${\chi}$\mid$}$. The modified pupil function is obtained and the diffraction intensity distribution for the finite aperture ($-{\omega}_0~{\times}{\omega}_0$ is obtained, and then the OTF is derived analytically. It is found the OTF is equal to or less than the $(OTF)_{q=0}$, namely the modulation is not useful. It is shown that the narrowing down the initial Gaussian diffraction pattern does not give the anticipated improvement in OTF and the reason is clarified.

  • PDF

Implementation of tunable laser source for WDM-PON using an self seeded F-P LD (Self Seeded F-P LD를 이용한 WDM-PON에서의 파장 가변 레이저 소스 구현)

  • Oh, Yeong-guk;Hwang, Ji-hong;Lee, Hyuek-jae;Lee, Chang-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.439-441
    • /
    • 2012
  • A new wavelength tunable laser source based on a self-seeded F-P LD for a WDM-PON system has been proposed in this paper. The proposed laser source has a merit of the wavelength tunable range of approximately 20 nm with very simple setup. The measured minimum relative intensity noise(RIN) was approximately -124 dB/Hz and the possibility of 10 Gb/s external modulation was showed.

  • PDF

Diffraction Behaviors of New Photopolymers and their Diffuser Properties

  • Yoon, Hyuk;Kim, Jae-Hong;Lee, Seung-Hwan;Paek, Sang-Hyon;Choi, Dong-Hoon
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • Photopolymers are quite promising candidates for holographic data storage and diffusers because of their high sensitivity and high refractive index modulation. New photopolymers were prepared using the cellulose ester binder bearing different kinds of monomer. The holographic gratings were elaborated successfully in these photopolymer samples by conventional optical interference method. We investigated the dynamic behavior of the diffraction efficiency and the effect of the functionality of the monomer doped into the polymer binder. Triacrylate monomer doped photopolymer showed the highest diffraction efficiency of around 80-90 %, even under low intensity of writing beam (I=2 mW/$cm^2$). We inscribed the gratings of the glass diffuser on the surface of the photopolymer and investigated their diffusion properties.