Pump Light Power of Wideband Optical Phase Conjugator using HNL-DSF in WDM Systems with MSSI

MSSI 기법을 채택한 WDM 시스템에서 HNL-DSF를 이용한 광대역 광 위상 공액기의 펌프 광 전력

  • Lee Seong real (Div. of Marine Electro. and Comm. Eng., Mokpo National Maritime University) ;
  • Cho Sung eun (School of Inform. and Telecomm. Eng., Sunchon National University)
  • Published : 2005.03.01

Abstract

In this paper, we numerically investigated the optimum pump light power resulting best compensation of pulse distortion due to both chromatic dispersion and self phase modulation (SPM) in long-haul 3×40 Gbps wavelength division multiplexing (WDM) systems. We used mid-span spectral inversion (MSSI) method with path-averaged intensity approximation (PAIA) as compensation approach, which have highly nonlinear dispersion shifted fiber (HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that HNL-DSF is an useful nonlinear medium in OPC for wideband WDM transmission, and in order to achieve the excellent compensation the pump light power is selected to equal the conjugated light power into the latter half fiber section with the input light power of WDM channel depending on total transmission length. Also we confirmed that compensation degree of WDM channel with small conversion efficiency is improved by using pump light power increasing power conversion ratio upper than 1.

장거리 3×40 Gbps 파장 분할 다중 시스템에서 색 분산과 자기 위상 변조에 의해 왜곡된 광 펄스를 최상으로 보상할 수 있는 최적의 펌프 광 전력을 수치적 방법으로 살펴보았다. 광 펄스 왜곡 보상 기법으로 경로 평균 강도 근사를 채택한 MSSI (Mid-Span Spectral Inversion) 기법을 사용하였고, 전체 전송로 중간에서 MSSI를 수행하는 광 위상 공액기(OPC)의 비선형 매질로는 HNL-DSF(Highly-Nonlinear Dispersion Shifted Fiber)를 이용하였다. 광 대역 WDM 전송을 위한 OPC의 비선형 매질로는 HNL-DSF가 매우 유용하다는 것을 확인하였고, 최상의 보상을 위한 OPC의 펌프 광 전력은 OPC를 통해 두 번째 광섬유로 입사하는 공액파 광 전력이 WDM 채널의 입력 광 전력과 같아지도록 전체 전송 거리와 관련하여 선택되어야 한다는 것을 확인하였다. 또한 적은 변환 효율을 갖는 WDM 채널의 개선된 보상은 전력 변환비를 1 이상으로 증가시킬 수 있는 전력의 펌프 광을 이용해야 얻을 수 있다는 것을 확인하였다.

Keywords

References

  1. D. Marcuse, 'Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion', J. Lightwave Technol., vol. LT-8, no. 10, pp. 1548-1557, 1990
  2. T. L. Koch and R. C. Alfemess, 'Dispersion compensation by active predistorted signal synthesis', J. Lightwave Technol., vol. LT-3, pp. 800-805, 1985
  3. F. Quellete, 'Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides', Opt. Left., vol. 12, pp. 847-849, 1987 https://doi.org/10.1364/OL.12.000847
  4. A. Yariv, D. Fekete, and D. M. Pepper, 'Compensation for channel dispersion by nonlinear optical phase conjugation', Opt. Left., vol. 4, pp. 52-54, 1979 https://doi.org/10.1364/OL.4.000052
  5. S. Watanabe, T. Naito, and T. Chikama, 'Compensation of chromatic dispersion in a single mode fiber by optical phase conjugation', IEEE Photon. Technol. Left., vol. 5, no. 1, pp. 92-95, 1993 https://doi.org/10.1109/68.185071
  6. K. Song and M. Premaratne, 'Effects of SPM, XPM, and four-wave-mixing in L-band EDFAs on fiber-optic signal transmission', IEEE Photon. Technol. Left., vol. 12, no. 12, pp. 1630-1632, 2000 https://doi.org/10.1109/68.896330
  7. S. Watanabe, S. Takada, G. Ishikawa, H. Ooi, J. G. Nielson, and C. Sonne, 'Simultaneous wavelength conversion and optical phase conjugation of 200 Gbfs (5x40 Gb/s) WDM signal using a highly nonlinear fiber four-wave mixer', IOOC/ECOC '98, PD Paper TA3A, pp. 1-4, 1997
  8. S. Watanabe and M. Shirasaki, 'Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation', J. Lightwave Technol., vol. LT-14, no. 3, pp. 243-248, 1996
  9. K. Kikuchi and C. Lorattanasene, 'Compensation for pulse waveform distortion in ultralong distance optical communication systems by using midway optical phase conjugator', IEEE Photon. Techno. Lett., vol. 6, pp. 1499-1501, 1994
  10. F. Forghieri, R. W. Tkach and A. R. Chraplyvy,'WDM systems with unequally spaced channels', J. Lightwave Technol., vol. LT-13, no. 5, pp. 889-897, 1995
  11. K. Inoue, 'Four-wave mixing in an optical fiber in the zero-dispersion wavelength region', J. Lightwave Technol., vol. LT-10, no. 11, pp. 1553 -1561, 1992
  12. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, pp. 34-44, 1989