• Title/Summary/Keyword: Optical imaging

Search Result 1,301, Processing Time 0.026 seconds

Plane-wave Full Waveform Inversion Using Distributed Acoustic Sensing Data in an Elastic Medium (탄성매질에서의 분포형 음향 센싱 자료를 활용한 평면파 전파형역산)

  • Seoje, Jeong;Wookeen, Chung;Sungryul, Shin;Sumin, Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.214-216
    • /
    • 2022
  • Distributed acoustic sensing (DAS), an increasingly growing acquisition technique in the oil and gas exploration and seismology fields, has been used to record seismic signals using optical cables as receivers. With the development of imaging methods for DAS data, full waveform inversion (FWI) is been applied to DAS data to obtain high-resolution property models such as P- and S-velocity. However, because the DAS systems measure strain from the phase distortion between two points along optical cables, DAS data must be transformed from strain to particle velocity for FWI algorithms. In this study, a plane-wave FWI algorithm based on the relationship between strain and horizontal particle velocity in the plane-wave assumption is proposed to apply FWI to DAS data. Under the plane-wave assumption, strain equals the horizontal particle velocity, which is scaled by the velocity at the receiver position. This relationship was confirmed using a numerical experiment. Furthermore, 4-layer and modified Marmousi-2 velocity models were used to verify the applicability of the proposed FWI algorithm in various survey environments. The proposed FWI was implemented in land and marine survey environments and provided high-resolution P- and S-velocity models.

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.

Assessment of Seawater Color by Digital Photographic Imaging (수색표준액과 해면의 디지털 화상 분석에 의한 수색판정)

  • Choi, Sok-Jin;Arakawa, Hisayuki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.2
    • /
    • pp.171-178
    • /
    • 2009
  • The purpose of this study was the development of a digital water color measurement system using a CCD optical device. Photographs of the standard medium of Forel and Ule water color scales in the laboratory, and one of sea surface above a Secchi disc (Z=SD/2) immersed in seawater were taken. The colors of these pictures were estimated with the value of CIE $L^*a^*b^*$. Water color assessment was conducted with a digital photo-image. In the case of the Forel scale (No. 1-11), the $b^*$ value was so high that the water color number was large. In the Ule scale (No.11-21), the $a^*$ value became high, which is why the number on the water color scale was large. The color of these pictures showed that the $a^*$ value in the Forel scale and the $b^*$ value in the Ule scale increase with the increase of the F value. The $a^*$ value of seawater color was always lower than the one on the Forel and Ule water color scales. This indicates that the color of the scales differs from actual seawater color. It was concluded that water color number can more effectively be assessed by estimating the ${\Delta}Eab^*$ color difference between the water scales and actual seawater color.

Multiple Outbursts of a Short-Periodic Comet 15P/Finlay

  • Ishiguro, Masateru;Kuroda, Daisuke;Kim, Yoonyoung;Kwon, Yuna;Hanayama, Hidekazu;Miyaji, Takeshi;Honda, Satoshi;Takahashi, Jun;Watanabe, Jun-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • 15P/Finlay is one of the Jupiter-Family Comets that has long been known since the late 19 century. The comet maintains the perihelion around 1.0 AU over a century, without showing any prominent activities (i.e. fragmentation or eruption) since the discovery. According to reports in unpublished observations, the comet exhibited an outburst in the middle of 2014 December. We conducted a imaging observation of 15P/Finlay just after the report, from 2014 December 23 to 2015 February 18 using three telescopes (the Okayama Astrophysical Observatory 50-cm telescope, the Ishigakijima Astronomical Observatory 105-cm telescope, and the Nishi-Harima Astronomical Observatory 2-m telescope), which constitute a portion of the OISTER (an inter-university observation network in the optical and infrared wavelengths). As a result of the frequent observations, we witnesses the second outburst around UT 2015 January 16. Such cometary outbursts draw the attention to researchers on ground that they could offer insight into the internal structure of comets, following a historical outburst occurred at 17P/Holmes on 2007 October 23. Although cometary outbursts have been often reported mostly in unpublished observations or unreviewed reports, it should be emphasized that there are not a sufficient number of astrophysical research which characterizes the physical properties by observing the aftermaths. This presentation provides a new observational result of 15P/Finlay outburst. Based on the morphological development of the dust cloud as well as the near-nuclear magnitude, we will derive the kinetic energy of the outburst. Finally we plan to compare the results of 15P/Finlay with those of analogical events at 17P/Holmes and P/2010 V1 (Ikeya-Murakami).

  • PDF

Electrical Switching Characteristics of Ge-Se Thin Films for ReRAM Cell Applications

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.343-344
    • /
    • 2012
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states. [1-3] We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF

Display System on a Tabletop for Two Viewers (2방향 관찰면 테이블형 디스플레이 시스템)

  • Yoon, Ki-Hyuk;Kim, Sung-Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.6
    • /
    • pp.255-263
    • /
    • 2012
  • In this paper, we designed a tabletop display which enables two viewers each to see a different image simultaneously within his/her defined viewing zone. In order to construct the designed viewing zones, we found the basic design conditions for a parallax barrier with a commercial LCD panel. As the viewing zones for two viewers are formed with only two view-point design, the interval between the center positions of each viewing zone and the width of each viewing zone are small compared to designed values. We analyzed the primary cases, introduced two modified design methods to enlarge the interval and the width of the viewing zones, and simulated their characteristics. As designed with six unit view-point and each viewing zone of each viewer is formed with a merged view-point, we found that adequate interval and width of viewing zones can be made, and we verified it in comparison with the tabletop display module that we fabricated.

The Examination of Reliability of Lower Limb Joint Angles with Free Software ImageJ

  • Kim, Heung Youl
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.583-595
    • /
    • 2015
  • Objective: The purpose of this study was to determine the reliability of lower limb joint angles computed with the software ImageJ during jumping movements. Background: Kinematics is the study of bodies in motion without regard to the forces or torques that may produce the motion. The most common method for collecting motion data uses an imaging and motion-caption system to record the 2D or 3D coordinates of markers attached to a moving object, followed by manual or automatic digitizing software. Above all, passive optical motion capture systems (e.g. Vicon system) have been regarded as the gold standards for collecting motion data. On the other hand, ImageJ is used widely for an image analysis as free software, and can collect the 2D coordinates of markers. Although much research has been carried out into the utilizations of the ImageJ software, little is known about their reliability. Method: Seven healthy female students participated as the subject in this study. Seventeen reflective markers were attached on the right and left lower limbs to measure two and three-dimensional joint angular motions. Jump performance was recorded by ten-vicon camera systems (250Hz) and one digital video camera (240Hz). The joint angles of the ankle and knee joints were calculated using 2D (ImageJ) and 3D (Vicon-MX) motion data, respectively. Results: Pearson's correlation coefficients between the two methods were calculated, and significance tests were conducted (${\alpha}=1%$). Correlation coefficients between the two were over 0.98. In Vicon-MX and ImageJ, there is no systematic error by examination of the validity using the Bland-Altman method, and all data are in the 95% limits of agreement. Conclusion: In this study, correlation coefficients are generally high, and the regression line is near the identical line. Therefore, it is considered that motion analysis using ImageJ is a useful tool for evaluation of human movements in various research areas. Application: This result can be utilized as a practical tool to analyze human performance in various fields.

Alkali swelling characteristics of wood elements (목재 구성세포의 알칼리 팽윤 특성)

  • 황원중;김남훈
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.62-72
    • /
    • 2001
  • To elucidate the behaviors of alkali swelllng of woods. the dimensional change in cross section of cell elements of four major Korean woods during alkali swelling were examined by an optical microscory, an imaging analysis method and an X-ray diffrartion During alkali swelling, tracheid diameter of Larix kaempferi wood showed greater swelling property than that of Pinus koraiensis wood, and the cell wall swelled highly over 10% sodium hydroxide solution treatment. The radial diameter of vessel elements in earlywood shrunk, but it swelled slightly in tangential direction. When treated with 5% NaOH, the wall thickness of wood fiber increased about three times over the original one. The thickness of cell wall in all elements and the diameter of wood fiber and tracheid showed almost isotropic shrinkage. The diameter of cell elements during the mercerization process decreased, but cell wall thickness Increased. Crystal transformation of cellulose in wood was not occurred by alkali treatments. but relative crystallinity and crystallite width of the woods increased slightly. Consequently, it was demonstrated that the swelling properties of woods were dependant on wood species, cell elements and alkali concentration.

  • PDF

Micro-imaging techniques for evaluation of plastic microfluidic chip

  • Kim, Jung-Kyung;Hyunwoo Bang;Lee, Yongku;Chanil Chung;Yoo, Jung-Yul;Yang, Sang-Sik;Kim, Jin-Seung;Park, Sekwang;Chang, Jun-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.239-247
    • /
    • 2001
  • The Fluorescence-Activated Cell Sorter (FACS) is a well-established instrument used for identifying, enumerating, classifying and sorting cells by their physical and optical characteristics. For a miniaturized FACS device, a disposable plastic microchip has been developed which has a hydrodynamic focusing chamber using soft lithography. As the characteristics of the spatially confined sample stream have an effect on sample throughput, detection efficiency, and the accuracy of cell sorting, systematic fluid dynamic studies are required. Flow visualization is conducted with a laser scanning confocal microscopy (LSCM), and three-dimensional flow structure of the focused sample stream is reconstructed from 2D slices acquired at $1\mutextrm{m}$ intervals in depth. It was observed that the flow structure in the focusing chamber is skewed by unsymmetrical velocity profile arising from trapezoidal cross section of the microchannel. For a quantitative analysis of a microscopic flow structure, Confocal Micro-PIV system has been developed to evaluate the accelerated flow field in the focusing chamber. This study proposes a method which defines the depth of the measurement volume using a detection pinhole. The trajectories of red blood cells (RBCs) and their interactions with surrounding flow field in the squeezed sample stream are evaluated to find optimal shape of the focusing chamber and fluid manipulation scheme for stable cell transporting, efficient detection, and sorting

  • PDF

Font Classification of English Printed Character using Non-negative Matrix Factorization (NMF를 이용한 영문자 활자체 폰트 분류)

  • Lee, Chang-Woo;Kang, Hyun;Jung, Kee-Chul;Kim, Hang-Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • Today, most documents are electronically produced and their paleography is digitalized by imaging, resulting in a tremendous number of electronic documents in the shape of images. Therefore, to process these document images, many methods of document structure analysis and recognition have already been proposed, including font classification. Accordingly, the current paper proposes a font classification method for document images that uses non-negative matrix factorization (NMF), which is able to learn part-based representations of objects. In the proposed method, spatially total features of font images are automatically extracted using NMF, then the appropriateness of the features specifying each font is investigated. The proposed method is expected to improve the performance of optical character recognition (OCR), document indexing, and retrieval systems, when such systems adopt a font classifier as a preprocessor.