• Title/Summary/Keyword: Optical fiber grating

Search Result 354, Processing Time 0.027 seconds

Bending Characteristics Change of Long-Period fiber Grating due to Co-doping of Boron for Optical fiber Sensors (광섬유 센서 구성을 위한 보론 첨가에 따른 장주기 광섬유 격자의 구부림 특성 변화)

  • Moon, Dae-Seung;Chung, Young-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.339-342
    • /
    • 2005
  • In long-period fiber grating (LPFG) to be made up optical fiber sensors, resonance coupling occurs between the forward-propagating core mode and cladding modes at the wavelength that satisfy the Phase matching condition. The resonance wavelength and the coupling strength depends strongly on the external environment like temperature, strain, and ambient index. These characteristics can be utilized for various applications as optical fiber sensors. fabrication of optical fiber gratings is typically based on the photosensitivity effect, i.e. the permanent change of the refractive index upon irradiation of the UV beam, and therefore, fabrication of the optical fiber with high phososensitivity is an important part of the research on optical fiber gratings. In this work, we measured the effort of to-doping of boron on the index difference between the core and cladding of the optical fiber and the sensitivity of the LPFC to the temperature and bending changes. We observed that the index difference between the core and the cladding decreased by $(1.69{\times}10^{-4}/SCCM)$ and the temperature sensitivity of the resonance wavelength shirt decreased by $(0.01145nm/^{\circ}C/SCCM)$. The dependence or the bending-induced changes or the transmission characteristics of LPFG on the tore-cladding index difference was investigated experimentally. The measurement results indicate that the bending sensitivity increases as the index difference decreases.

A Study on the Development of Optical-Fiber Water Leakage Sensing System (광파이버 누수센싱 시스템 개발에 관한 연구)

  • Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.86-91
    • /
    • 2012
  • A multi purpose environmental monitoring system has been developed as a commercially available standard using the techniques which are FBG(Fiber Bragg Grating), Hetero-core spliced fiber optic sensor and etc, for the purposes of monitoring large scaled structures and preserving natural environments. The monitoring system has been tested and evaluated in a possible outdoor condition in view of the full scaled operation at actual sites to be monitored. Additionally, the developed systems in the previous works conveniently provided us with various options of sensor modules intended for monitoring such physical quantities as displacement, distortion, pressure, binary states, and liquid adhesion. In this paper, we extend the previous results to a water leakage detection problem and develop a sensing system as a result. By the experimental study, it is verified that multi-point leakage detection is possible using single line optical fiber.

Performance Evaluation of A Tunable Dispersion Compensator based on Strain-Chirped Fiber Bragg Grating in a 40 Gb/s Transmission Link

  • Kim, Chul-Han;Bae, Jun-Key;Lee, Kwan-Il;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.244-248
    • /
    • 2008
  • We have evaluated the performance of strain-chirped fiber Bragg grating (FBG) based tunable dispersion compensator in a 40 Gb/s transmission link. In our proposed compensator, the value of dispersion could be changed from -353 ps/nm to -962 ps/nm by adjusting the rotation angle of the metal beam on which the FBG was mounted. In order to evaluate the effect of ripples in reflectivity and variations in passband of the FBG based dispersion compensator, transmission performance has been measured with our tunable dispersion compensator. Error-free transmission of a 40 Gb/s non-return-to-zero (NRZ) signal over conventional single-mode fiber (SMF) was achieved.

Self-Organized Dynamics of Photoinduced Phase Grating formation in Optical Fibers (광 섬유내의 광유도 위상격자가 형성되는 자기조직 역학에 관한 연구)

  • 안성혁
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.464-473
    • /
    • 1993
  • The dynamics of phase grating formation with visible light in an optical fiber is investigated. Adopting a simple two-photon local bleaching model, it is shown that the grating self-organize into an ideal grating, where the writing frequency is always in the center of the local band gap, as it evolves. The evolution at each point in the fiber is described in terms of a universal parameter that reduces the coupled partial differential equations describing the system to ordinary differential equatior~s. These equations are used to prove that there exists a fixed point of the grating growth process that corresponds to a perfectly phase-mached grating.

  • PDF

Optical Acetylene Gas Detection using a Photonic Bandgap Fiber and Fiber Bragg Grating (광섬유 격자와 포토닉 밴드갭 광섬유를 이용한 아세틸렌가스 검출)

  • Lee, Yun-Kyu;Lee, Kyung-Shik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.23-29
    • /
    • 2010
  • We propose an optical gas sensor, which consists of a hollow core photonic bandgap fiber (HC-PBGF) and fiber Bragg grating (FBG), for the detection of acetylene gas. The gas detection scheme is uniquely characterized by modulating the Bragg wavelength of the fiber Bragg grating around a selected absorption line of gas filled in the photonic bandgap fiber. In the measurement, a 2m-long HC-PBGF and FBG with a Bragg wavelength of 1539.02nm were used. The FBG was modulated at 2Hz. We demonstrated that the optical fiber gas sensor was able to selectively measure the 2.5% and 5% of acetylene gases.

A Study on the One-way Optical Image Transmission Through Optical Fiber by Degenerate Four Wave Mixing (축퇴 4 광파 혼합에 의한 광섬유에서의 광영상 직접전송에 관한 연구)

  • 안병구;이우상;김은수;양인응
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.4
    • /
    • pp.460-466
    • /
    • 1988
  • In this paper, the theory and experiments on the one-way optical image transmission through optical fiber by using degenerate four wave mixing in BSO single crystal are demonstrated. From the theoretical analysis, the diffraction efficiency of phase conjugate wave in BSO single crystal is greatly dependent on applied electric field intensity, diffraction grating period formed in the crystal and incident beam ratio, those are also in good agreement with the experimental results. Based on the experimental results, we have arranged the typical degenerate four wave mixing system in the optimal conditions (applied electric field, E. = 5kV/cm` diffraction grating period, 3\ulcorner` beam ratio of backward pump wave versus signal wave, 2.7) and realized one-way optical image transmission system through optical fiber using BSO single crystal.

  • PDF

Long-Period Fiber Grating Analysis Using Generalized N×N Coupled-Mode Theory by Section-Wise Discretization

  • Jeong, Yoon-Chan;Lee, Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.55-63
    • /
    • 1999
  • For the precise analysis and design of LPFG's, a new method of generalized N$\times$N coupled-mode theory by section-wise discretization was proposed. This is applicable to the analysis for arbitrary grating structures, which can readily take grating nonuniformities and multimode couplings into account. Utilizing the method, several analyses of LPFG's were presented, and relationships between the grating structures and their spectral responses were discussed.

Dispersion Compensation in the Optical Fiber Transmission system using the Fiber Bragg Grating (FBG를 이용한 광 파이버 분산 보상에 관한 연구)

  • 신희성;홍성철;손용환;이종윤;이창원;정진호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.81-84
    • /
    • 2001
  • We propose the cascade FBG(Fiber Bragg Grating)s to compensate the dispersion, discuss the dispersion characteristics of such cascaded FBGs, compare with the single FBG dispersion compensator. For these, we theoretically consider the sencond- and third-order group-velocity dispersion(GVD) in the single fiber grating using plane wave solution and the coupled mode equation. We also theoretically find the group-velocity dispersion in the cascaded fiber gratings from the results in the single fiber grating and present the optimum disign data of the cascaded FBGs dispersion compensator in the N-channel WDM system through the numerical simulation.

  • PDF

Fiber-optic Ccurrent Sensor Using a Long-period Fiber Grating Inscribed on a High Birefringent Fiber (복굴절이 큰 광섬유에 제작된 장주기 광섬유 격자를 이용한 광섬유 전류 센서)

  • Lee, Yong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1823-1825
    • /
    • 2007
  • Based on Faraday effect, the variation of current flowing through the conductor can be encoded as that of azimuth angle of light polarization propagating through the fiber coil wound onto the conductor. The amount of current can be obtained by measuring the variation of the light intensity transformed from that of the azimuth angle through a polarization analyzer. In this paper we propose a fiber-optic current sensor system that employs a fiber polarization analyzer as a sensor interrogation device. The fiber polarization analyzer was prepared by inscribing a long-period fiber grating on a high birefringent fiber. At the fixed wavelength of 1522.5 nm, the fabricated fiber device has the polarization extinction ratio of more than 25 dB. The measurement of large current up to 600 Arms was accomplished based on a simple fiber interrogation device and the measurement output of the sensor system showed a good linearity.