• Title/Summary/Keyword: Optical fiber Alignment

Search Result 66, Processing Time 0.024 seconds

A Study on the Imprinting Process for an Optical Interconnection of PLC Device (광소자의 광 정렬 및 연결 구조 구현용 임프린트 공정 연구)

  • Kim, Young Sub;Cho, Sang Uk;Kang, Ho Ju;Jeong, Myung Yung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1376-1381
    • /
    • 2012
  • Optical devices are used extensively in the field of information network. Increasing demand for optical device, optical interconnection has been a important issue for commercialization. However many problems exist in the interconnection between optical device and optical fiber, and in the case of the multi-channel, problems of the optical alignment and optical array arise. For solving the alignment and array problem of optical device and the optical fiber, we fabricated fiber alignment and array by using imprint technology. Achieved higher precision of optical fiber alignment and array due to fabricating using imprint technology. The silicon stamp with different depth was fabricated using the conventional photolithography. Using the silicon stamp, a nickel stamp was fabricated by electroforming process. We conducted imprint process using the nickel stamp with different depth. The optical alignment and array by fabricating the patterns of optical device and fiber alignment and array using imprint process, and achieved higher precision of decreasing the dimensional error of the patterns by optimization of process. The fabricated optical interconnection of PLC device was measured 3.9 dB and 4.2 dB, lower than criteria specified by international standard.

Design, Fabrication and Test of the Micro Optical Add/Drop Module Using Silicon Optical Bench and Automatic Optical Fiber/Filter Alignment System (실리콘 광벤치 및 자동 광섬유/필터 정렬시스템을 이용한 극소형 광통신용 Add/Drop 모듈의 설계 제작 및 실험)

  • 최두선;박한수;서영호;김성곤;제태진;황경현
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.211-215
    • /
    • 2004
  • Recently, one of remarkable tends in the development of optical communication industry is the miniaturization and integration of products. The alignment system of micro optical module is a key apparatus for the miniaturization of optical module and the development of optical communication parts with high functionality. In this research, we have developed a system capable of automatic alignment of a $30\mu\textrm{m}$-thick film filter and a lensed fiber in order to improve the speed and losses in the optical fiber-to-filter alignment of optical modules. Using the developed automatic alignment system and silicon optical bench, we have measured optical loss and characteristics of the assembled optical add/drop module before packaging $1{\times}1$ OADM optical module. Whole size of add/drop module was less than $5mm{\times}5mm{\times}1mm$. The measured maximum insertion loss was 0.294㏈ that is below 0.3㏈ which is a standard loss of optical module.

Fabrication and Aging effect of Micro OADM using Automatic Alignment System (자동 광축 정렬시스템을 이용한 초소형 광통신용 마이크로 OADM 제작 및 Aging effect)

  • S. K., Kim;Y. H., Seo;D. S., Choi;T. J., Jae;K. H., Whang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.644-647
    • /
    • 2004
  • Optical add/drop multiplexers (OADMs), one of the new network elements, will play a key role enabling greater connectivity and flexibility in the dense wavelength-division multiplexing (DWDM) networks. The importance of OADMs is that they allow the optical network to be local transmitting/extraction on a wavelength-by-wavelength basis to optimize traffic, efficient network utilization, network growth, and to enhance network flexibility. Also, the automatic assembly system of micro optical filters and fibers is a key technology in the development of optical modules with high functionality. Recently, one of remarkable tends in the development of optical communication industry is the miniaturization and integration of products. In this research, we have developed a system capable of automatic alignment of a film filter and a lensed fiber in order to improve the speed and losses in the optical fiber to filter alignment of optical modules. Using the developed automatic alignment system and silicon optical benches, we have fabricated the micro OADM and measured the insertion loss and aging effect.

  • PDF

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.

Optical Packaging and Interconnection Technology (광 패키징 및 인터커넥션 기술)

  • Kim, Dong Min;Ryu, Jin Hwa;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.13-18
    • /
    • 2012
  • By the need for high-speed data transmission in PCB, the studies on the optical PCB has been conducted with optical interconnection and its packaging technology. Particularly, the polymer-based optical interconnection has been extensively studied with the advantages such as cost-effective and ease of process. For high-efficiency and passive alignment, the studies were performed using the 45 degree mirrors, MT connector, and etc. In this work, integrated PLC device and fiber alignment array block was fabricated by using imprint technology to solve the alignment and array problem of optical device and the optical fiber. The fabricated integrated block for optical interconnection of PLC device has achieved higher precision of decreasing the dimensional error of the patterns by optimization of process and its insertion loss has an average value of 4.03dB, lower than criteria specified by international standard. In addition, a optical waveguide with built-in lens has been proposed for high-efficiency and passive alignment. By simulation, it was confirmed that the proposed structure has higher coupling efficiency than conventional no-lens structure and has the broad tolerance for the spatial offset of optical waveguide.

Femtosecond Laser Application to PLC Optical Devices and Packaging

  • Sohn, Ik-Bu;Lee, Man-Seop;Lee, Sang-Man
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.446-448
    • /
    • 2005
  • Using tightly focused femtosecond laser pulses, we produce an optical waveguide and devices in transparent materials. This technique has the potential to generate not only channel waveguides, but also three-dimensional optical devices. In this paper, an optical splitter and U-grooves, which are used for fiber alignment, are simultaneously fabricated in a fused silica glass using near-IR femtosecond laser pulses. The fiber- aligned optical splitter has a low insertion loss, less than 4 dB, including an intrinsic splitting loss of 3 dB and excess loss due to the passive alignment of a single-mode fiber. Finally, we present an output field pattern, demonstrating that the splitting ratio of the optical splitter becomes approximately 1:1.

  • PDF

Development of Multi-axis Nano Positioning Stage for Optical Alignment (광소자 정렬용 극초정밀 다축 위치 제어장치 개발)

  • 정상화;이경형;차경래;김현욱;최석봉;김광호;박준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.304-307
    • /
    • 2004
  • As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.

  • PDF

Development of Multi-Axis Ultra Precision Stage for Optical Alignment (광소자 정렬용 초정밀 다축 스테이지 개발)

  • 정상화;이경형;김광호;차경래;김현욱;최석봉;박준호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.213-218
    • /
    • 2004
  • As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.

  • PDF

Development of Automatic Optical Fiber Alignment System and Optimal Aligning Algorithm (자동 광 정렬시스템 및 최적 광 정렬알고리즘의 개발)

  • Um, Chul;Kim, Byung-Hee;Choi, Young-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.194-201
    • /
    • 2004
  • Optical fibers are indispensable fer optical communication systems that transmit large volumes of data at high speed. But the aligning technology under the sub-micron accuracy is required for the precise axis adjustment and connection. For the purpose of precise alignment of the optical arrays, in this research, we have developed the 12-axis(with 8 automated axis and 4 manual axis) automatic optical fiber alignment system including the image processing-based searching system, the automatic loading system using the robot and the suction toot and the automatic UV bonding system. In order to obtain the sub-micron alignment accuracy, two 4-axis PC-based motion controllers and the two 50nm resolution 6-aixs micro-stage actuated by micro stepping motors are adopted. The fiber aligning procedure consists of two steps. Firstly, the optical wave guide and an input optical array are aligned by the 6-axis input micro-stage with the IR camera. The image processing technique is introduced to reduce primary manual aligning time and result in achieving the 50% decrease of aligning time. Secondly, the IR camera is replaced by the output micro-stage and a wave guide and two optical arrays are aligned simultaneously before the laser power intensity delivered to the optical powermeter reached the threshold value. When the aligning procedure is finished, the wave guide and arrays are W bonded. The automatic loading/unloading system is also introduced and the entire wave guide handing time is reduced significantly compared to the former commercial aligning system.

A Study on the Optical Device Alignment Characteristics Improvement using Multi-Axis Ultra Precision Stage (극초정밀 다축 스테이지를 이용한 광소자 정렬 특성 향상에 관한 연구)

  • Jeong, Sang-Hwa;Cha, Kyoung-Rae;Kim, Gwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.175-183
    • /
    • 2005
  • In recent years, as the demands of VBNS and VDSL increase, the development of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM elements increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this Paper, the optical alignment characteristic of multi-axis ultra precision stage is studied. The alignment algorithms are studied for applying to the ultra precision multi-axis stage. The alignment algorithm is comprised of field search and peak search algorithms. The contour of optical power signals can be obtained by field search and the precise coordinate can be found out by peak search. Three kinds of alignments, such as 1 ch. input vs. 1 ch. output optical stack, 1 ch. input vs. 8 ch. output PLC stacks, and ferrule vs. ferrule, are performed for investigating the alignment characteristics.