• 제목/요약/키워드: Optical encryption

검색결과 131건 처리시간 0.024초

A Joint Transform Correlator Encryption System Based on Binary Encoding for Grayscale Images

  • Peng, Kaifei;Shen, Xueju;Huang, Fuyu;He, Xuan
    • Current Optics and Photonics
    • /
    • 제3권6호
    • /
    • pp.548-554
    • /
    • 2019
  • A binary encoding method for grayscale images is proposed to address their unsatisfactory decryption results from joint transform correlator (JTC) encryption systems. The method converts the encryption and decryption of grayscale images into that of binary images, and effectively improves decrypted-image quality. In the simulation, we replaced unencoded grayscale images with their binary encoded counterparts in the JTC encryption and decryption processes, then adopted a median filter to suppress saturation noise while keeping other settings unchanged. Accordingly, decrypted-image quality was clearly enhanced as the correlation coefficient (CC) between a decrypted image and its original rose from 0.8237 to 0.9473 initially, and then further to 0.9937, following the above two steps respectively. Finally, optical experimental results confirmed that the proposed encryption system works correctly.

Three-Dimensional Optical Encryption of Quick Response Code

  • Kim, Youngjun;Yun, Hui;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • 제16권3호
    • /
    • pp.153-159
    • /
    • 2018
  • In this paper, we present a three-dimensional (3D) optical encryption technique for quick response (QR) code using computational synthesized integral imaging, computational volumetric reconstruction, and double random phase encryption. Two-dimensional (2D) QR code has many advantages, such as enormous storage capacity and high reading speed. However, it does not protect primary information. Therefore, we present 3D optical encryption of QR code using double random phase encryption (DRPE) and an integral imaging technique for security enhancement. We divide 2D QR code into four parts with different depths. Then, 2D elemental images for each part of 2D QR code are generated by computer synthesized integral imaging. Generated 2D elemental images are encrypted using DRPE, and our method increases the level of security. To validate our method, we report simulations of 3D optical encryption of QR code. In addition, we calculated the peak side-lobe ratio (PSR) for performance evaluation.

광 암호화를 이용한 안전한 지문 인식 시스템 (Secure Fingerprint Identification System based on Optical Encryption)

  • 한종욱;김춘수;박광호;김은수
    • 한국통신학회논문지
    • /
    • 제24권12B호
    • /
    • pp.2415-2423
    • /
    • 1999
  • We propose a new optical method which conceals the data of authorized persons by encryption before they are stored or compared in the pattern recognition system for security systems. This proposed security system is made up of two subsystems : a proposed optical encryption system and a pattern recognition system based on the JTC which has been shown to perform well. In this system, each image of authorized persons as a reference image is stored in memory units through the proposed encryption system. And if a fingerprint image is placed in the input plane of this security system for access to a restricted area, the image is encoded by the encryption system then compared with the encrypted reference image. Therefore because the captured input image and the reference data are encrypted, it is difficult to decrypt the image if one does not know the encryption key bit stream. The basic idea is that the input image is encrypted by performing optical XOR operations with the key bit stream that is generated by digital encryption algorithms. The optical XOR operations between the key bit stream and the input image are performed by the polarization encoding method using the polarization characteristics of LCDs. The results of XOR operations which are detected by a CCD camera should be used as an input to the JTC for comparison with a data base. We have verified the idea proposed here with computer simulations and the simulation results were also shown.

  • PDF

Double Random Phase Encryption Based Orthogonal Encoding Technique for Color Images

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • 제18권2호
    • /
    • pp.129-133
    • /
    • 2014
  • In this paper, we propose a simple Double random phase encryption (DRPE)-based orthogonal encoding technique for color image encryption. In the proposed orthogonal encoding technique, a color image is decomposed into red, green, and blue components before encryption, and the three components are independently encrypted with DRPE using the same key in order to decrease the complexity of encryption and decryption. Then, the encrypted data are encoded with a Hadamard matrix that has the orthogonal property. The purpose of the proposed orthogonal encoding technique is to improve the security of DRPE using the same key at the cost of a little complexity. The proposed orthogonal encoder consists of simple linear operations, so that it is easy to implement. We also provide the simulation results in order to show the effects of the proposed orthogonal encoding technique.

Dual Optical Encryption for Binary Data and Secret Key Using Phase-shifting Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.263-269
    • /
    • 2012
  • In this paper, we propose a new dual optical encryption method for binary data and secret key based on 2-step phase-shifting digital holography for a cryptographic system. Schematically, the proposed optical setup contains two Mach-Zehnder type interferometers. The inner interferometer is used for encrypting the secret key with the common key, while the outer interferometer is used for encrypting the binary data with the same secret key. 2-step phase-shifting digital holograms, which result in the encrypted data, are acquired by moving the PZT mirror with phase step of 0 or ${\pi}/2$ in the reference beam path of the Mach-Zehnder type interferometer. The digital hologram with the encrypted information is a Fourier transform hologram and is recorded on CCD with 256 gray level quantized intensities. Computer experiments show the results to be encryption and decryption carried out with the proposed method. The decryption of binary secret key image and data image is performed successfully.

이중 임의 위상판을 이용한 광학상의 암호화 및 암호화 수준 분석 (Optical image encryption by use of double random phase mask and analysis of its encryption level)

  • 김병철;차성도;신승호
    • 한국광학회지
    • /
    • 제13권1호
    • /
    • pp.79-83
    • /
    • 2002
  • 회전항을 첨가한 임의 위상판(random phase mask; RPM)을 이용하여 광학상 암호화 장치의 암호화수준을 향상시키는 방법을 제시하였다. 이중 임의 위상판으로 암호화된 광학상은 광굴절 LiNbO$_3$:Fe 결정에 기록되고 위상공액파를 이용하여 재생하였으며, 세기변조 함수를 이용하여 아날로그 입력상에 대한 암호화 수준을 분석하였다.

CFB 모드에 기반한 2 차원 페이지 데이터의 광학적 암호화 응용 (Application to 2-D Page-oriented Data Optical Cryptography Based on CFB Mode)

  • 길상근
    • 전기전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.424-430
    • /
    • 2015
  • 본 논문은 CFB(Cipher Feedback) 모드에 기반한 2 차원 페이지 데이터의 광학적 암호화 응용 시스템을 제안한다. 광학적으로 구현된 CFB 암호화 시스템은 2 차원 페이지 데이터 암호화를 위해 자유공간 광 연결 이중 인코딩 기법을 이용한다. 또한, 제안된 방법은 기존의 1 차원 암호화키를 처리하는 CFB 방식보다 2 차원 페이지 단위로 배열된 매우 큰 암호화키를 제공하기 때문에 암호강도가 한층 더 강화된 암호화 시스템을 구현한다. 제안한 CFB 알고리즘의 성능을 검증하기 위해 컴퓨터 시뮬레이션을 통하여 2 차원 페이지 데이터의 암호화 및 복호화 과정을 보여주고 오차 분석을 수행하였다. 시뮬레이션 결과, 제안한 CFB 방식은 기존의 1 차원 블록 방식보다 데이터 처리용량과 긴 암호화키를 가지는 강력한 광학적 페이지 암호화 시스템을 가능하게 한다.

분할 영상과 결합변환 상관기를 이용한 주파수 영역에서의 광 암호화 시스템 구현 (Fourier-Plane Encryption System using Divided Images and a Joint Transform Correlator)

  • 최상규;신창목;서동환;김수중;배장근
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 제14회 정기총회 및 03년 동계학술발표회
    • /
    • pp.58-59
    • /
    • 2003
  • We propose the optical encryption system using two divided image to hide the original image and a joint transform correlator. The encryption procedure is performed by the Fourier transform of the product of each phase encoded image (divided phase images) and the same random phase image which is generated by computer processing. An autocorrelation term of joint transform correlator contributes to decrypt the original image. This system will be used in optical certification.

  • PDF

이산 카오스 함수와 Permutation Algorithm을 결합한 고신뢰도 광영상 암호시스템 (A high reliable optical image encryption system which combined discrete chaos function with permutation algorithm)

  • 박종호
    • 정보보호학회논문지
    • /
    • 제9권4호
    • /
    • pp.37-48
    • /
    • 1999
  • 현대암호방식은 종래의 선형 대수와 수리이론을 적용한 암호통신을 벗어난 유사 잡음성을 띠는 카오스 신호를 이용한 암호통신을 적용해 오고 있다,[1-2] 본 논문은 1차 permutation 알고 리즘을 이용 하여 변환된 정보를 2차 이산 카오스 변환 함수를 이용해 암호화하는 광영상 암호시스템을 제안하여UT 다. 제안된 시스템은 키수열 발생기의 출력을 통해 영상정보를 permutation 하는 알고리즘 을 설계하였고 이에 대한 검정을 수행하였다. 또한 본 논문에서는 permutation 알고리즘을 통해 제한적인 카오스 함수 의 적용시 발생하는 문제점을 해결하고 비도를 증가시킴으로써 광영상 암호시스템에 적용 시 그 타당성 을 검정하였다. Current encryption methods have been applied to secure communication using discrete chaotic system whose output is a noise-like signal which differs from the conventional encryption methods that employ algebra and number theory[1-2] We propose an optical encryption method that transforms the primary pattern into the image pattern of discrete chaotic function first a primary pattern is encoded using permutation algorithm, In the proposed system we suggest the permutation algorithm using the output of key steam generator and its security level is analyzed. In this paper we worked out problem of the application about few discrete chaos function through a permutation algorithm and enhanced the security level. Experimental results with image signal demonstrate the proper of the implemented optical encryption system.

Optical Encryption of a Binary Image by Phase Modulation of the Wavefront

  • Song, Jaehun;Moon, Inkyu;Lee, Yeonho
    • Journal of the Optical Society of Korea
    • /
    • 제20권3호
    • /
    • pp.358-362
    • /
    • 2016
  • We present a new scheme for optical encryption of a binary image. In our method, the original binary data page is first divided into two identical pages. In each data page, the “on” and “off” pixels are represented by two discrete phases that are 90° apart. The first page corresponds to the phase conjugation of the second page, and vice versa. In addition, the wavefront of the two data pages is changed simultaneously from planar to spherical, for better encryption. The wavefront modification is represented by an extra phase shift, which is a function of position on the wavefront. In this way the two separate pages are both encrypted, and therefore the pages cannot be distinguished in a CCD. If the first page is used as an encrypted data page, then the second page is used as the decryption key, and vice versa. The decryption can be done by simply combining the two encrypted data pages. It is shown in our experiment that encryption and decryption can be fully accomplished in the optical domain.