• Title/Summary/Keyword: Optical diagnostic

Search Result 140, Processing Time 0.027 seconds

Raman Spectroscopy Studies of Graphene Nanoribbons and Chemical Doping in Graphene

  • Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.15-15
    • /
    • 2011
  • Atom-thick graphene membrane and nano-sized graphene objects (NGOs) hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. To realize this potential, chemical properties of graphene need to be understood and diagnostic methods for various NGOs are also required. To meet these needs, chemical properties of graphene and optical diagnostics of graphene nanoribbons (GNRs) have been explored by Raman spectroscopy, AFM and STM scanning probes. The first part of the talk will illustrate the role of underlying silicon dioxide substrates and ambient gases in the ubiquitous hole doping of graphene. An STM study reveals that thermal annealing generates out-of-plane deformation of nanometer-scale wavelength and distortion in $sp^2$ bonding on an atomic scale. Graphene deformed by annealing is found to be chemically active enough to bind molecular oxygen, which leads to a strong hole-doping. The talk will also introduce Raman spectroscopy studies of GNRs which are known to have nonzero electronic bandgap due to confinement effect. GNRs of width ranging from 15 nm to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by upshifted G band and strong disorder-related D band originating from scattering at ribbon edges. Detailed analysis of the G, D, and 2D bands of GNRs proves that Raman spectroscopy is still a reliable tool in characterizing GNRs despite their nanometer width.

  • PDF

Detection of Radial Pulse by Combinational Fiber-optic Transducer (조합형 광섬유 트랜스듀서에 의한 요골맥파의 검출)

  • Park, Seung-Hwan;Hong, Seung-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.197-202
    • /
    • 1998
  • The human pulse wave is a vital biosignal that includes the diagnostic data related with the heart and the cardiovascular system of human body. Based on the mechanical transducing method, a pulse detection transducer using optical fiber was developed to acquire the pulses non-invasively. To improve the detection efficiency, we proposed a new design that consists of two combinational parts; detecting part, which is in contact with the pulsating skin and transmits the displacement motion of the pulsating skin to the sensing part, and sensing part, which converts the physical quantity transmitted from the detecting part to electronic signal. By using the new method, we confirmed that the proposed transducer can detect the C point(incisura) and the T wave(tidal wave) which is not easily detected by existing transducers.

  • PDF

A Real-Time Diagnostic Study of MgO Thin Film Deposition Process by ICP Magnetron Sputtering Method (MgO 증착을 위한 유도결합 플라즈마 마그네트론 스퍼터링에서 실시간 공정 진단)

  • Joo Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.73-78
    • /
    • 2005
  • A real-time monitoring of ICP(inductively coupled plasma) assisted magnetron sputtering of MgO was carried out using a QMS(quadrupole mass spectrometer), an OES(optical emission spectrometer), and a digital oscilloscope with a high voltage probe and a current monitor. At the time of ICP ignition, the most distinct impurity was OH emission (308.9 nm) which was dissociated from water molecules. For reactive deposition oxygen was added to Ar and the OH emission intensity was reduced abruptly When the discharge voltage was regulated by a PID controller from 240V(metallic mode) to 120V(oxide mode), the emission intensity from Mg (285.2 nm) changed proportionally to the discharge voltage, but the intensity of Ar I(811.6 nm) was constant. At 100V of discharge voltage, Mg sputtering was almost stopped. Emissions from Ar I(420.1 nm) and Mg I were dropped down to 1/10, but Ar I(811.6 nm) didn't change. And the emission from atomic oxygen (O I, 777.3 nm) was increased to 10 times. These results are compatible with those from QMS study.

A Study of Etch Characteristics of ITO Thin Film using the Plasma Diagnostic Tools

  • Park, J.Y.;Lee, D.H.;Jeong, C.H.;Kim, H.S.;Kwon, K.H.;Yeom, G.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.85-87
    • /
    • 2000
  • In this study, high-density plasma etching characteristics of ITO(indium tin oxide) films used for transparent electrodes in display devices have been investigated. The etch characteristics of ITO as a function of $Ar/CH_4$ gas mixtures were analyzed using QMS(quadrupole mass spectrometry), OES(optical emission spectroscopy), and ESP(electrostatic probe). ITO etch rates were increased with the addition of moderate amount of $CH_4$ to Ar due to the increased chemical reaction between $CH_3$ or H and ITO in addition to the physical sputtering of ITO by Ar ion bombardment. However, the addition of excess amount of $CH_4$ decreased the ITO etch rates possibly due to the increased polymer formation on the ITO surface. Also, the measurement data obtained by QMS and OES suggested that $CH_3$ radicals are more activity involved in the etching of ITO compared to H radicals.

  • PDF

New Diagnostic Techniques in Cancer of the Pharynx and Esophagus (인두암과 식도암의 새로운 진단내시경)

  • Cho, Joo Young;Cho, Won Young
    • Korean Journal of Bronchoesophagology
    • /
    • v.17 no.1
    • /
    • pp.14-18
    • /
    • 2011
  • The diagnosis and treatment of early gastrointestinal cancers is the gastroenterologists' mission because of national cancer screening program in South Korea. The detection of early cancers is emphasized, because these were previously treated with surgical treatment can be currently cured with endoscopic treatment. Gastroenterologists who achieved at least on some level can make an exact diagnosis regardless of what type of endoscopy, but generally, there are some required conditions for an optimal diagnosis. First, clinically important lesions have to be detected easily. Second, the border and morphology of lesions have to be characterized easily. Third, lesions have to be diagnosed exactly. Precancers and early cancers are often subtle and can pose a challenge to gastroenterologists to visualize using standard white light endoscopy. The use of dye solutions aids the diagnosis of early gastrointestinal cancers, however, it is a quite cumbersome to use dye solutions all the time and the solution often bothers the exact observation by pooling into the depression or ulceration of the lesion. To overcome this weakness, newer endoscopes are now developed so called "image enhanced endoscopy" using optical and/or electronic methods such as narrow band imaging (NBI), autofluorescence imaging (AFI), i-scan, flexible spectral imaging color enhancement (FICE) and confocal endomicroscopy (CLE).

  • PDF

Comparison of Binding Stoichiometry of [Ru(1,10-phenanthroline)2dipyrido [3,2-a:2',3'-c]phenazine]2+ and its Bis-derivative to DNA

  • Jang, Yoon-Jung;Lee, Hyun-Mee;Lee, Il-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3658-3662
    • /
    • 2010
  • A new bis-Ru(II) complex, in which two [Ru(1,10-phenanthroline)$_2$dipyrido[3,2-a:2',3'-c]phenazine]$^{2+}$ were tethered by a 1,3-bis(4-pyridyl)propane linker, was synthesized and its binding mode and stoichiometry to DNA was investigated by optical spectroscopy including linear dichroism (LD) and fluorescence intensity measurement. The magnitude of the negatively reduced LD signal of the bis-Ru(II) complex in the dipyrido[3,2-a:2',3'-c]phenazine (DPPZ) ligand absorption region appeared to be similar compared to that in the DNA absorption region, which is considered to be a diagnostic for DPPZ ligand intercalation. The binding stoichiometry measured from its LD magnitude and enhanced fluorescence intensity corresponds to one ligand per three DNA bases, effectively violating the nearest neighbouring site exclusion model for classical DNA intercalation. This observation is in contrast with monomer analogue [Ru(1,10-phenanthroline)$_2$dipyrido[3,2-a:2',3'-c]phenazine]$^{2+}$, which is saturated at the DPPZ ligand to DNA base ratio of 0.25, or one DPPZ ligand per four nucleobases.

Diagnostics to Probe Environmental Effects on Late-type Galaxies in the Virgo Cluster

  • Yoon, Hyein;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • We investigate 53 late-type galaxies in Virgo to get better understanding galaxy evolution driven by environmental effects in the cluster. The goal is to study how galaxies are strongly affected gravitationally by their surroundings and/or how interstellar medium (ISM) of galaxies changes through the interaction with intracluster medium (ICM). To quantify these, a variety of diagnostic methods have been introduced. Our diagnostics have two different perspectives. First, we have carefully examined the morphological and kinematical properties of individual galaxies using high resolution HI images and compared with multi-wavelength data. Based on the visual inspection, we have identified signatures of the interactions with other galaxies or the ICM. Second, we have quantified influence of local environments of individual galaxies using X-ray data and optical catalog of the cluster. By combining all the diagnostics, we have identified the environmental effect(s) at work on individual galaxies. We also probe the environmental processes as a function of the cluster centric distance. Various gravitational interactions are found throughout the cluster, while the ICM-ISM interaction is mainly dominant near the cluster center. However, we find some evidence that galaxies start losing their gas already in the low density outskirts of the cluster.

  • PDF

Clinical Diagnosis of Oral Cancer (구강암의 임상적 진단)

  • Choi, Sung Weon
    • The Journal of the Korean dental association
    • /
    • v.49 no.3
    • /
    • pp.136-145
    • /
    • 2011
  • Oral cavity cancer accounts for approximately 3-4% of all malignancies and is a significant worldwide health problem. The Korea Central Cancer Registry estimates that there will be approximately 1500 new cases of oral cancer in Korea. Oral cancer occurs most commonly in middle-aged and elderly individuals. The majority of oral malignancies occur as squamous cell carcinomas and despite remarkable advances in treatment modalities, the 5-year survival rate has not significantly improved over the past several decades, hovering at about 50% to 60%. The unfavorable 5-year survival rate may be attributable to several factors. First, oral cancer is often diagnosed at a late stage, with late stage 5-year survival rates as low as 22%. Additionally, the development of secondary primary tumors in patients with early stage disease has a major impact on survival. The early detection of oral cancer and premalignant lesions offers the promise to cure chance of oral cancer. The major diagnostics moddalities for oral cancer include oral cavity examination, supravital staining, oral cytology, and optical detection systems. But the clinical finding of oral mucosa is the most important key to confirm the oral cancer until now. The traditional clinical examination of oral cavity can be performed quickly, is without additional diagnostic expense to patients, and may be performed by health care professionals. Therefore, clinicians must be well-acquainted with clinical characteristics of oral cancer and practice routine screening for oral cancer in dental clinic to decrease the morbidity and mortality of disease.

A Study on the Carbonization and Strengthening of PAN Fiber by Microwave Plasma (마이크로웨이브 플라즈마를 이용한 탄화공정 및 PAN fiber의 강도 향상에 관한 연구)

  • Choi, Ji-Sung;Joo, Jung-Hoon;Lee, Hun-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.89-94
    • /
    • 2012
  • A study to replace a high temperature thermal carbonization process with microwave plasma process is carried for PAN fiber as a starting material. Near atmospheric pressure microwave plasma (1 Torr~45 Torr) was used to control to get the fiber temperature up to $1,000^{\circ}C$. Even argon is an inert gas, its plasma state include high internal energy particles; ion (15.76 eV) and metastable (11.52 eV). They are very effective to lower the necessary thermal temperature for carbonization of PAN fiber and the resultant thermal budget. The carbonization process was confirmed by both EDS (energy dispersive spectroscopy) of plasma treated fibers and OES (optical emission spectroscopy) during processing step as a real time monitoring tool. The same trend of decreasing oxygen content was observed in both diagnostic methods.

Imaging Evaluation of Peritoneal Metastasis: Current and Promising Techniques

  • Chen Fu;Bangxing Zhang;Tiankang Guo;Junliang Li
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.86-102
    • /
    • 2024
  • Early diagnosis, accurate assessment, and localization of peritoneal metastasis (PM) are essential for the selection of appropriate treatments and surgical guidance. However, available imaging modalities (computed tomography [CT], conventional magnetic resonance imaging [MRI], and 18fluorodeoxyglucose positron emission tomography [PET]/CT) have limitations. The advent of new imaging techniques and novel molecular imaging agents have revealed molecular processes in the tumor microenvironment as an application for the early diagnosis and assessment of PM as well as real-time guided surgical resection, which has changed clinical management. In contrast to clinical imaging, which is purely qualitative and subjective for interpreting macroscopic structures, radiomics and artificial intelligence (AI) capitalize on high-dimensional numerical data from images that may reflect tumor pathophysiology. A predictive model can be used to predict the occurrence, recurrence, and prognosis of PM, thereby avoiding unnecessary exploratory surgeries. This review summarizes the role and status of different imaging techniques, especially new imaging strategies such as spectral photon-counting CT, fibroblast activation protein inhibitor (FAPI) PET/CT, near-infrared fluorescence imaging, and PET/MRI, for early diagnosis, assessment of surgical indications, and recurrence monitoring in patients with PM. The clinical applications, limitations, and solutions for fluorescence imaging, radiomics, and AI are also discussed.