• Title/Summary/Keyword: Optical deterioration

Search Result 89, Processing Time 0.025 seconds

Characteristics of the Black Surface Layer on Carbonate Stone Pagoda in Urban Area and Its Origin (도심지역에 위치한 탄산염암 석탑 표면에 형성된 흑색층의 특성과 그 기원)

  • Do, Jin-Young;Kim, Jeong-Jin;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.383-392
    • /
    • 2006
  • Calcium carbonate stone deterioration has been intensified in urban area, mainly due to the action of atmospheric pollutant. Samples from the black surface layer were examined under petrographic and scanning electron microscope, coupled with energy dispersive X-ray analyser X-ray fluorescence and X-ray diffraction analysis was also carried out for chemical composition and mineral phase analysis, respectively. Moreover, sulphur isotope ratio was measured, in order to identify the origin of sulphate compounds in the black surface layer. Optical and electronic petrographic analysis indicated that gypsum and Quartz were contained in the black surface layer and led to microcracks. Microstructure and chemical composition analysis showed that the interface between black layer and original stone is not black but its characteristic is similar to black layer The results indicated that during deterioration process the black layer can be expanded gradually into the interface by adsorption of atmospheric pollutants. The sulphur isotope analysis demonstrates that there are different origins of the sulphur component in black surface layer.

A Development of Small-diameter Composite Helical Spring for Reinforcement of Optical Fiber Jumper Cord (OJC) (광점퍼코드 (OJC) 보호용 미소 직경 복합재료 스프링 개발)

  • 윤영기;박성도;이연수;윤희석;이우일
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.17-22
    • /
    • 2002
  • Small diameter composite helical springs (CS) are developed using a hot plated mold for reinforcement of common optical fiber jumper cord (OJC). The outer diameters of the springs are about 2 ~ 3mm. These springs are inserted into the OJC to protect the damage of an optical fiber from the sudden lateral load. Two types of CS, Yarn type (Y-type) and Band type (B-type), are manufactured to compare the effectiveness for the damage protection. The experimental works were conducted to check the effect of the CS covered around OJC on the mechanical and optical properties. Experimental observations show a considerable effect on the flexural resistance, hence slowing down the deterioration of the optical power by the internal damage of the fiber. Obtained main results are as follows: (1) Y-type CS has better protection abilities to lateral loading than B-types. (2) Compared with bare OJC, CS-OJC has less power loss under the loading. (3) OJC covered with the composite coil spring has a possibility for a practical usage with full fruits.

Development of the Video Optical Network Unit for Dual Band Broadcasting Services (이중 대역 방송 서비스가 가능한 비디오 광수신기(ONU: Optical Network Unit)의 개발)

  • Lee, Jin-Young;Kim, Bo-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2412-2418
    • /
    • 2009
  • As an astonishing progress of FTTH infrastructure, the new technologies have been widely studied to use the tantalizing benefits of high bandwidth in fiber optic cable. In this paper, a new VONU is presented to perform all necessary optical functions. It can converts digital and analog CATV signals and satellite-based signal transmitted via one fiber optic cable to electrical signals (electric lights). However, most previous VONU systems have the problems such as interference between difference services, signal distortion, and noise increasing rate. These problems cause the quality deterioration in broadcasting. Therefore, we suggest the new VONU system to solve all problems listed above. In addition, we show that how our system performs well by measuring the real data with implemented system.

Study on Optical Characteristics of Nano Hollow Silica with TiO2 Shell Formation

  • Roh, Gi-Yeon;Sung, Hyeong-Seok;Lee, Yeong-Cheol;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.98-103
    • /
    • 2019
  • Optical filters to control light wavelength of displays or cameras are fabricated by multi-layer stacking process of low and high index thin films. The process of multi-layer stacking of thin films has received much attention as an optimal process for effective manufacturing in the optical filter industry. However, multi-layer processing has disadvantages of complicated thin film process, and difficulty of precise control of film morphology and material selection, all of which are critical for transmittance and coloring effect on filters. In this study, the composite $TiO_2$, which can be used to control of UV absorption, coated on nano hollow silica sol, was synthesized as a coating material for optical filters. Furthermore, systematic analysis of the process parameters during the chemical reaction, and of the structural properties of the coating solutions was performed using SEM, TEM, XRD and photo spectrometry. From the structural analysis, we found that the 85 nm nano hollow silica with 2.5 nm $TiO_2$ shell formation was successfully synthesized at proper pH control and titanium butoxide content. Photo luminescence characteristics, excited by UV irradiation, show that stable absorption of 350 nm-light, correlated with a 3.54 eV band gap, existed for the $TiO_2$ shell-nano hollow silica reacted with 8.8 mole titanium butoxide solution. Transmittance observed on substrate of the $TiO_2$ shell-nano hollow silica showed effective absorption of 200-300 nm UV light without deterioration of visible light transparency.

Development of SWIR 3D Lidar System with Low Optical Power Using 1 Channel Single Photon Detector (1채널 단일광자검출기를 이용한 낮은 광출력의 SWIR(Short Wave Infrared) 3D 라이다 시스템 개발)

  • Kwon, Oh-Soung;Lee, Seung-Pil;Shin, Seung-Min;Park, Min-Young;Ban, Chang-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1147-1154
    • /
    • 2022
  • Now that the development of autonomous driving is progressing, LiDAR has become an indispensable element. However, LiDAR is a device that uses lasers, and laser side effects may occur. One of them is the much-talked-about eye-safety, and developers have been satisfying this through laser characteristics and operation methods. But eye-safety is just one of the problems lasers pose. For example, irradiating a laser with a specific energy level or higher in a dusty environment can cause deterioration of the dust particles, leading to a sudden explosion. For this reason, the dust ignition proof regulations clearly state that "a source with a pulse period of less than 5 seconds is considered a continuous light source, and the average energy does not exceed 5 mJ/mm 2 or 35 mW" [2]. Energy of output optical power is limited by the law. In this way, the manufacturer cannot define the usage environment of the LiDAR, and the development of a LiDAR that can be used in such an environment can increase the ripple effect in terms of use in application fields using the LiDAR. In this paper, we develop a LiDAR with low optical power that can be used in environments where high power lasers can cause problems, evaluate its performance. Also, we discuss and present one of the directions for the development of LiDAR with laser power limited by dust ignition proof regulations.

Real-time Measurements of Water Level and Temperature using Fiber-optic Sensors Based on an OTDR (광섬유와 OTDR을 이용한 실시간 수위 및 온도 측정)

  • Sim, Hyeok In;Yoo, Wook Jae;Shin, Sang Hun;Jang, Jaeseok;Kim, Jae Seok;Jang, Kyoung Won;Cho, Seunghyun;Moon, Joo Hyun;Lee, Bongsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1239-1244
    • /
    • 2014
  • In this study, two fiber-optic sensors were fabricated to measure water level and temperature using optical fibers, a coupler, a Lophine and an OTDR (optical time-domain reflectometer). First, using Fresnel's reflection generated at the distal-ends of each optical fiber, which was installed at different depth, we measured the water level according to the variation of water level. Next, we also measured the temperature of water using a temperature sensing probe based on the Lophine, whose absorbance changes with the temperature. The measurable temperature range of the fiber-optic sensor is from $5^{\circ}C$ to $65^{\circ}C$ because the maximum operation temperature of the optical fiber without a physical deterioration is up to $80^{\circ}C$.

Distributed Virtual Topology Adaptation Method to Support IP Traffic in WDM Mesh Networks (WDM Mesh 네트워크에서 IP 트래픽을 수용하기 위한 분산형 가상토폴로지 적응 기법)

  • Kim, Eal-Lae;Lee, Sung-Kuen;Lee, Yong-Won;Chang, Sun-Hyok;Lee, Myung-Moon;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.1-10
    • /
    • 2007
  • We propose a new approach to accommodate bidirectional asymmetric traffic demands as well as unexpected dynamic internet traffic variation in the WDM mesh network by using optical networking technologies. In the proposed scheme, an intermediate node determines the optical path based on the switching statistics of IP router of the node which characterizes the Internet traffic variation, which in effect provides a dynamic and distributed traffic control over the network. It is expected to reduce the efficiency deterioration of RWA(Routing and Wavelength Assignment) due to the real-time variation of Internet traffic so that expandability and flexibility of the network can be enhanced. In this paper, we describe a methodology for traffic behavior analysis at a node, and the decision policy of the establishment/release of optical path. In addition, we evaluate the performance of the proposed scheme through the computer simulations.

Multi-Label Image Classification on Long-tailed Optical Coherence Tomography Dataset (긴꼬리 분포의 광간섭 단층촬영 데이터세트에 대한 다중 레이블 이미지 분류)

  • Bui, Phuoc-Nguyen;Jung, Kyunghee;Le, Duc-Tai;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.541-543
    • /
    • 2022
  • In recent years, retinal disorders have become a serious health concern. Retinal disorders develop slowly and without obvious signs. To avoid vision deterioration, early detection and treatment are critical. Optical coherence tomography (OCT) is a non-invasive and non-contact medical imaging technique used to acquire informative and high-resolution image of retinal area and underlying layers. Disease signs are difficult to detect because OCT images have many areas which are not related to any disease. In this paper, we present a deep learning-based method to perform multi-label classification on a long-tailed OCT dataset. Our method first extracts the region of interest and then performs the classification task. We achieve 98% accuracy, 92% sensitivity, and 99% specificity on our private OCT dataset. Using the heatmap generated from trained convolutional neural network, our method is more robust and explainable than previous approaches because it focuses on areas that contain disease signs.

Influence of Coarse Grained Sandy Soil in Ground on Deterioration of Stone Cultural Properties (지면에 조성된 조립사질 토양이 석조문화재의 훼손에 끼치는 영향)

  • Do Jin-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.31-38
    • /
    • 2006
  • Site environments bring about various different deterioration forms of stone cultural properties. The aim of this study is to document the influence of coarse grained sandy soil on the deterioration of stone cultural properties. Bulguksadabotap is a good example that demonstrates the problem with coarse grained sandy soil. The ground around the Bulguksadabotap is covered with coarse grained sandy soil and the pagoda is surrounded by the corridors. Coarse grained sandy soil float easily in the air and deposit in the complicated stone structure caused by strong wind in Gyeongju and numerous visitors. To explain the influence of coarse grained sandy soil on the deterioration, the coarse grained sandy soil and weathered stone pieces of Bulguksadabotap were analyzed by XRD, optical microscopy, SEM for mineralogical component and IC and ICP-AES for the soluble salts. The soil and weathered stone pieces include clay minerals, such as smectite and kaolinite, can expand with water and exert pressure on the stone. Small size of the clay minerals in the coarse grained sandy soil can easily penetrate into the weathered surfaces of the Bulguksadabotap. The weathered stone pieces also contain NaCl, which is known to contribute to increase the expandibility of clay minerals by providing with $Na^{+}$ or by dropping the equilibrium of relative humidity. These results indicates that coarse grained sandy soil is not proper to site environment for weathered stone cultural properties.

Effect of Work Function of Zn-doped ITO Thin Films on Characteristics of Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지 특성에 대한 Zn 도핑된 ITO 박막의 일함수 효과)

  • Lee, Seung-Hun;Tark, Sung-Ju;Choi, Su-Young;Kim, Chan-Seok;Kim, Won-Mok;Kim, Dong-Hhwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.491-496
    • /
    • 2011
  • Transparent conducting oxides (TCOs) used in the antireflection layer and current spreading layer of heterojunction solar cells should have excellent optical and electrical properties. Furthermore, TCOs need a high work function over 5.2 eV to prevent the effect of emitter band-bending caused by the difference in work function between emitter and TCOs. Sn-doped $In_2O_3$ (ITO) film is a highly promising material as a TCO due to its excellent optical and electrical properties. However, ITO films have a low work function of about 4.8 eV. This low work function of ITO films leads to deterioration of the conversion efficiency of solar cells. In this work, ITO films with various Zn contents of 0, 6.9, 12.7, 28.8, and 36.6 at.% were fabricated by a co-sputtering method using ITO and AZO targets at room temperature. The optical and electrical properties of Zn-doped ITO thin films were analyzed. Then, silicon heterojunction solar cells with these films were fabricated. The 12.7 at% Zn-doped ITO films show the highest hall mobility of 35.71 $cm^2$/Vsec. With increasing Zn content over 12.7, the hall mobility decreases. Although a small addition of Zn content increased the work function, further addition of Zn content over 12.7 at.% led to decreasing electrical properties because of the decrease in the carrier concentration and hall mobility. Silicon heterojunction solar cells with 12.7 at% Zn-doped ITO thin films showed the highest conversion efficiency of 15.8%.