• Title/Summary/Keyword: Optical detection

Search Result 1,461, Processing Time 0.029 seconds

Training Performance Analysis of Semantic Segmentation Deep Learning Model by Progressive Combining Multi-modal Spatial Information Datasets (다중 공간정보 데이터의 점진적 조합에 의한 의미적 분류 딥러닝 모델 학습 성능 분석)

  • Lee, Dae-Geon;Shin, Young-Ha;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.91-108
    • /
    • 2022
  • In most cases, optical images have been used as training data of DL (Deep Learning) models for object detection, recognition, identification, classification, semantic segmentation, and instance segmentation. However, properties of 3D objects in the real-world could not be fully explored with 2D images. One of the major sources of the 3D geospatial information is DSM (Digital Surface Model). In this matter, characteristic information derived from DSM would be effective to analyze 3D terrain features. Especially, man-made objects such as buildings having geometrically unique shape could be described by geometric elements that are obtained from 3D geospatial data. The background and motivation of this paper were drawn from concept of the intrinsic image that is involved in high-level visual information processing. This paper aims to extract buildings after classifying terrain features by training DL model with DSM-derived information including slope, aspect, and SRI (Shaded Relief Image). The experiments were carried out using DSM and label dataset provided by ISPRS (International Society for Photogrammetry and Remote Sensing) for CNN-based SegNet model. In particular, experiments focus on combining multi-source information to improve training performance and synergistic effect of the DL model. The results demonstrate that buildings were effectively classified and extracted by the proposed approach.

Exposure Assessment of Heavy Metals Migrated from Glassware on the Korean Market (국내 유통 식품용 유리제의 중금속 노출 평가)

  • Kim, Eunbee;Hwang, Joung Boon;Lee, Jung Eun;Choi, Jae Chun;Park, Se-Jong;Lee, Jong Kwon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • The purpose of our study was to investigate the migration level of lead (Pb), cadmium (Cd), and barium (Ba) from glassware into a food simulant and to evaluate the exposure of each element. The test articles were glassware, including tableware, pots, and other containers. Pb, Cd, and Ba were analysed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The analytical performance of the method was validated in terms of its linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, precision, and uncertainty. The monitoring was performed for 110 samples such as glass cups, containers, pots, and bottles. a food simulant. Migration test was conducted at 25? for 24 hours in a dark place using 4% acetic acid as a food simulant. Based on the data; exposure assessment was carried out to compare the estimated daily intake (EDI) to the human safety criteria. The risk levels of Pb and Ba determined in this study were approximately 1.9% and 0.3% of the provisional tolerable weekly intake (PTWI) and tolerable daily intake (TDI) value, respectively, thereby indicating a low exposure to the population.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

Development of a Method for Tracking Sandbar Formation by Weir-Gate Opening Using Multispectral Satellite Imagery in the Geumgang River, South Korea (금강에서 다분광 위성영상을 이용한 보 운영에 따른 모래톱 형성 추적 방법의 개발)

  • Cheolho Lee;Kang-Hyun Cho
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.135-142
    • /
    • 2023
  • A various technology of remote sensing and image analysis are applied to study landscape changes and their influencing factors in stream corridors. We developed a method to detect landscape changes over time by calculating the optical index using multispectral images taken from satellites at various time points, calculating the threshold to delineate the boundaries of water bodies, and creating binarized maps into land and water areas. This method was applied to the upstream reach of the weirs in the Geumgang River to track changes in the sandbar formed by the opening of the weir gate. First, we collected multispectral images with a resolution of 10 m × 10 m taken from the Sentinel-2 satellite at various times before and after the opening of the dam in the Geumgang River. The normalized difference water index (NDWI) was calculated using the green light and near-infrared bands from the collected images. The Otsu's threshold of NDWI calculated to delineate the boundary of the water body ranged from -0.0573 to 0.1367. The boundary of the water area determined by remote sensing matched the boundary in the actual image. A map binarized into water and land areas was created using NDWI and the Otsu's threshold. According to these results of the developed method, it was estimated that a total of 379.7 ha of new sandbar was formed by opening the three weir floodgates from 2017 to 2021 in the longitudinal range from Baekje Weir to Daecheong Dam on the Geumgang River. The landscape detection method developed in this study is evaluated as a useful method that can obtain objective results with few resources over a wide spatial and temporal range.

SELECTIVE DETECTION OF VIABLE ENTEROCOCCUS FAECALIS USING PROPIDIUM MONOAZIDE IN COMBINATION WITH REAL-TIME PCR (Propidium monoazide와 real-time PCR을 이용한 살아있는 Enterococcus faecalis의 선택적인 검출)

  • Kim, Sin-Young;Lee, Seung-Jong;Kim, Eui-Seong;Seo, Deog-Gyu;Song, Yoon-Jung;Jung, Il-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.6
    • /
    • pp.537-544
    • /
    • 2008
  • Polymerase chain reaction (PCR) can detect bacteria more rapidly than conventional plate counting. However DNA-based assays cannot distinguish between viable and dead cells due to persistence of DNA after cells have lost their vitality. Recently, propidium monoazide (PMA) treatment has been introduced. The purpose of this study is to evaluate the applicability of the PMA treatment and real-time PCR method for cell counting in comparison with plate counting and to evaluate the antibacterial efficacy of 2% CHX on E. faecalis using PMA treatment in combination with real-time PCR. Firstly, to elucidate the relationship between the proportion of viable cells and the real-time PCR signals after PMA treatment, mixtures with different ratios of viable and dead cells were used. Secondly, relative difference of viable cells using PMA treatment in combination with real-time PCR was compared with CFU by plate counting. Lastly, antibacterial efficacy of 2% CHX on E. faecalis was measured using PMA treatment in combination with real-time PCR. The results were as follows : 1. Ct value increased with decreasing proportion of viable E. faecalis. 2. There was correlation between viable cells measured by real-time PCR after PMA treatment and CFU by plate counting until Optical density (OD) value remains under 1.0. However, viable cells measured by real-time PCR after PMA treatment have decreased at 1.5 of OD value while CFU kept increasing. 3. Relative difference of viable E. faecalis decreased more after longer application of 2% CHX.

Monte Carlo Simulations of Detection Efficiency and Position Resolution of NaI(TI)-PMT Detector used in Small Gamma Camera (소형 감마카메라 제작에 사용되는 NaI(TI)- 광전자증배관 검출기의 민감도와 위치 분해능 특성 연구를 위한 몬테카를로 시뮬레이션)

  • Kim, Jong-Ho;Choi, Yong;Kim, Jun-Young;Im, Ki-Chun;Kim, Sang-Eun;Choi, Yeon-Sung;Joo, Kwan-Sik;Kim, Young-Jin;Kim, Byung-Tae
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.67-76
    • /
    • 1997
  • We studied optical behavior of scintillation light generated in NaI(TI) crystal using Monte Carlo simulation method. The simulation was performed for the model of NaI(TI) scintillator (size: 60 mm ${\times}$ 60 mm ${\times}$ 6 mm) using an optical tracking code. The sensitivity as a function of surface treatment (Ground, Polished, Metal-0.95RC, Polished-0.98RC, Painted- 0.98RC) of the incident surface of the scintillator was compared. The effects of NaI(TI) scintillator thickness and the refractive index of light guide optically coupling between the NaI(TI) scintillator and photomultiplier tube (PMT) were simulated. We also evaluated intrinsic position resolution of the system by calculating the spread of scintillation light generated. The sensitivities of the system having the surface treatment of Ground, Polished, Metal-0.95RC, Polished-0.98RC and Painted-0.98RC were 70.9%, 73.9%, 78.6%, 80.1% and 85.2%, respectively, and the surface treatment of Painted-0.98RC allowed the highest sensitivity. As increasing the thickness of scintillation crystal and light guide, the sensitivity of the system was decreased. As the refractive index of light guide increases, the sensitivity was increased. The intrinsic position resolution of the system was estimated to be 1.2 mm in horizontal and vertical directions. In this study, the performance of NaI(TI)-PMT detector system was evaluated using Monte Carlo simulation. Based on the results, we concluded that the NaI(TI)-PMT detector array is a favorable configuration for small gamma camera imaging breast tumor using Tc-99m labeled radiopharmaceuticals.

  • PDF

DETECTION OF EARLY PROXIMAL CARIES WITH LASER FLUORESCENCE (레이저 형광법을 이용한 인접면 우식증의 진단)

  • Seol, Jae-Heon;Oh, You-Hyang;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.236-246
    • /
    • 2004
  • Artificial carious lesions in various depths were observed with visual examination using light transillumination, bite-wing radiography, laser fluorescence, and dye-enhanced laser fluorescence to determine the reproducibility, correlation of each diagnostic method, diagnostic sensitivity and diagnostic specificity. And optical densities according to demineralized times were measured whether laser fluorescence could be used as a quantitative diagnostic method. The following results were obtained whether laser fluorescence could be used for diagnosis of initial proximal caries. 1. Tau-c values of visual examination was 0.08 which showed lowest reproducibility and those of bite-wing radiography, laser fluorescence, dye-enhanced laser fluorescence were 0.60, 0.48, and 0.64, respectively which showed relatively high reproducibility. 2. The correlation between demineralization time and each examination was the highest in dye-enhanced laser fluorescence$({\gamma}=0.51)$ followed by laser fluorescence$({\gamma}=0.43)$, bite-wing radiograph$({\gamma}=0.35)$, and visual examination$({\gamma}=0.33)$. Dye-enhanced laser fluorescence and laser fluorescence showed significant correlation with demineralization time. 3. The sensitivity of laser fluorescence and dye-enhanced laser fluorescence for diagnosing approximal caries based on bite-wing radiography were 67%, 100% and those of specificity were 57%, 11% which showed diagnostic specificity was relatively lower than sensitivity. 4. The difference in optical density(DFR) between sound teeth and carious lesions according to lesion depth was high with dye-enhanced laser fluorescence compared with laser fluorescence. DFR measured with laser fluorescence according to changes in lesion depth was statistically significant but was not statistically significant with dye-enhanced laser fluorescence. Based on these results, laser fluorescence and dye-enhanced laser fluorescence have comparable diagnostic power as bite-wing radiography in early diagnosis of proximal caries.

  • PDF

Detection of Surface Changes by the 6th North Korea Nuclear Test Using High-resolution Satellite Imagery (고해상도 위성영상을 활용한 북한 6차 핵실험 이후 지표변화 관측)

  • Lee, Won-Jin;Sun, Jongsun;Jung, Hyung-Sup;Park, Sun-Cheon;Lee, Duk Kee;Oh, Kwan-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1479-1488
    • /
    • 2018
  • On September 3rd 2017, strong artificial seismic signals from North Korea were detected in KMA (Korea Meteorological Administration) seismic network. The location of the epicenter was estimated to be Punggye-ri nuclear test site and it was the most powerful to date. The event was not studied well due to accessibility and geodetic measurements. Therefore, we used remote sensing data to analyze surface changes around Mt. Mantap area. First of all, we tried to detect surface deformation using InSAR method with Advanced Land Observation Satellite-2 (ALOS-2). Even though ALOS-2 data used L-band long wavelength, it was not working well for this particular case because of decorrelation on interferogram. The main reason would be large deformation near the Mt. Mantap area. To overcome this limitation of decorrelation, we applied offset tracking method to measure deformation. However, this method is affected by window kernel size. So we applied various window sizes from 32 to 224 in 16 steps. We could retrieve 2D surface deformation of about 3 m in maximum in the west side of Mt. Mantap. Second, we used Pleiadas-A/B high resolution satellite optical images which were acquired before and after the 6th nuclear test. We detected widespread surface damage around the top of Mt. Mantap such as landslide and suspected collapse area. This phenomenon may be caused by a very strong underground nuclear explosion test. High-resolution satellite images could be used to analyze non-accessible area.

Extraction of Water Body Area using Micro Satellite SAR: A Case Study of the Daecheng Dam of South korea (초소형 SAR 위성을 활용한 수체면적 추출: 대청댐 유역 대상)

  • PARK, Jongsoo;KANG, Ki-Mook;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • It is very essential to estimate the water body area using remote exploration for water resource management, analysis and prediction of water disaster damage. Hydrophysical detection using satellites has been mainly performed on large satellites equipped with optical and SAR sensors. However, due to the long repeat cycle, there is a limitation that timely utilization is impossible in the event of a disaster/disaster. With the recent active development of Micro satellites, it has served as an opportunity to overcome the limitations of time resolution centered on existing large satellites. The Micro satellites currently in active operation are ICEYE in Finland and Capella satellites in the United States, and are operated in the form of clusters for earth observation purposes. Due to clustering operation, it has a short revisit cycle and high resolution and has the advantage of being able to observe regardless of weather or day and night with the SAR sensor mounted. In this study, the operation status and characteristics of micro satellites were described, and the water area estimation technology optimized for micro SAR satellite images was applied to the Daecheong Dam basin on the Korean Peninsula. In addition, accuracy verification was performed based on the reference value of the water generated from the optical satellite Sentinel-2 satellite as a reference. In the case of the Capella satellite, the smallest difference in area was shown, and it was confirmed that all three images showed high correlation. Through the results of this study, it was confirmed that despite the low NESZ of Micro satellites, it is possible to estimate the water area, and it is believed that the limitations of water resource/water disaster monitoring using existing large SAR satellites can be overcome.

Evaluation of the stability of IgM and specific antibody response of sevenband grouper Epinephelus septemfasciatus for application of antibody-detection ELISA (항체검출 ELISA 적용을 위한 능성어 IgM의 안정성 및 특이 항체 반응 평가)

  • Kim, Chun-Seob;Jang, Min-Seok;Kim, Wi-Sik;Kim, Jong-Oh;Kim, Du-Woon;Kim, Do-Hyung;Han, Hyun-Ja;Jeong, Sung-Ju;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.335-342
    • /
    • 2009
  • The stability of immunoglobulin M (IgM) on different serum storage conditions and specific antibody response were tested using the serum collected from sevenband grouper Epinephelus septemfasciatus by enzyme-linked immunosorbent assay (ELISA). To test the effect of storage temperature and duration, sevenband grouper antiserum against bovine serum albumin (BSA) was stored at -80, -20 or 4${^{\circ}C}$ for 1, 34, 61 or 119 days. In addition, to test the effect of repeated freeze-thawing condition, the anti-BSA fish serum was frozen at -20 and -80${^{\circ}C}$ and then thawn and frozen for 1, 5 or 10 times repeatedly. Consequently, no significant difference was found in ELISA optical density (O.D.) values of sera for the above mentioned storage conditions: different temperatures (-80, -20 and 4${^{\circ}C}$), durations of storage (1, 34, 61 and 119 days), and repeated thaw-freeze cycles (1, 5, and 10 times), indicating that IgMs of test fish were stable. The specific antibody response of sevenband grouper was observed after BSA-immunization of the test fish reared at 20 ${^{\circ}C}$ or 25${^{\circ}C}$. At the rearing temperature of 20${^{\circ}C}$, the specific antibody against BSA first appeared at 14 days and maximum antibody titer was observed between 21 and 28 days, while at the rearing temperature of 25 ${^{\circ}C}$, specific antibody appeared at 7 days and maximum antibody titer was observed between 14 and 21 days. In conclusion, the rearing temperature at 25${^{\circ}C}$ gave a faster and higher specific antibody response than at 20${^{\circ}C}$ and the specific antibody response maintained for approximately 2 months at 20℃ and 25${^{\circ}C}$.