• Title/Summary/Keyword: Optical crosstalk

Search Result 123, Processing Time 0.027 seconds

Characteristics of Micro Groove grinding for the Mold of PDP Barrier Ribs (PDP 격벽용 금형의 마이크로 홈 연삭 특성)

  • 조인호;정상철;박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.963-966
    • /
    • 2000
  • Plasma display panel (PDP) is a type of flat panel display utilizing the light emission that is produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalk from adjacent sub-pixels. Mold for forming barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing process such as screen printing, sand-blasting and photosensitive glass methods. Mold for PDP barrier ribs have stripes of micro grooves transferring stripes of glass-material wall. In this paper. Stripes of grooves of which width 48 um, depth 124um, pitch 274um was acquired by machining the material of WC with dicing saw blade. Maximum roughness of the bottom and sidewall of the grooves was respectively 120 nm, 287 nm. Maximum tilt angle caused by difference between upper-most width and lower-most width was 2$^{\circ}$. Maximum Radius of curvature of bottom was 7.75 ${\mu}{\textrm}{m}$. This results meets the specification for barrier ribs of 50 inch XGA PDP. Forming the glass paste will be followed by using mold in the near future.

  • PDF

A Construction Scheme of Next Generation Wire Communication System by using Long-reach WDM-PON (장거리 전송 파장분할 다중방식 수동형 광가입자망을 이용한 차세대 국방 유선통신체계 구축방안)

  • Kim, Min-Hwan;Lee, Sang-Mook;Lee, Chang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.90-99
    • /
    • 2007
  • We demonstrate an 80km-reach 64-channel DWDM-PON based on wavelength-locked F-P LDs by changing the position of the C-band BLS for upstream channels from the CO to the RN. It mitigates the necessity of the high power C-band BLS and its handling problems. It also reduces back scattering induced penalty. We obtained less than $10^{-6}$ PLRs in all 128channels through 80km SMF. We also demonstrate a 240km-reach DWDM-PON based on wavelength-locked F-P LDs by adding a bidirectional erbium-doped fiber amplifier(EDFA). We show packet-loss-free transmission in all 128channels at 125 Mb/s per channel over 240km SMF We report the detuning effect of arrayed waveguide gratings(AWGs) and crosstalk effect in the implemented system. We Propose an architecture of a next generation defense wire communication system with the demonstrated long-reach DWDM-PON.

Atomic Force Microscope for Standard Length Metrology (직교 스캐너와 레이저 간섭계를 사용한 교정용 원자현미경)

  • Lee, Dong-Yeon;Kim, Dong-Min;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1611-1617
    • /
    • 2006
  • A compact and two-dimensional atomic force microscope (AFM) using an orthogonal sample scanner, a calibrated homodyne laser interferometer and a commercial AFM head was developed for use in the nano-metrology field. The x and y position of the sample with respect to the tip are acquired by using the laser interferometer in the open-loop state, when each z data point of the AFM head is taken. The sample scanner which has a motion amplifying mechanism was designed to move a sample up to $100{\times}100{\mu}m^2$ in orthogonal way, which means less crosstalk between axes. Moreover, the rotational errors between axes are measured to ensure the accuracy of the calibrated AFM within the full scanning range. The conventional homodyne laser interferometer was used to measure the x and y displacements of the sample and compensated via an X-ray interferometer to reduce the nonlinearity of the optical interferometer. The repeatability of the calibrated AFM was measured to sub-nm within a few hundred nm scanning range.

system performance with different fiber structures in Raman ampliffer (라만 증폭기에서 광섬유 구조에 따른 성능 분석)

  • 박재형;민범기;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • We examine the performance of a Raman amplifier as a function of fiber structure with respect to amplifier gain and double Rayleigh crosstalk penalty. Variations on fiber core radius or index affect both the Raman gain efficiency and Rayleigh backscattering. Contrary to the common concept, the penalty from the doubly amplified Rayleigh scattering could exceed the benefits of higher gain efficiency of small effective area fibers. Appropriate fiber designing parameters are required to increase Raman amplifier efficiency without system penalties. lties.

  • PDF

The Performance Analysis of a Novel Optical Space Switch Employing Multihop Structure and Time Division Multiplexing (시분할 다중합 방식과 멀티 홉 구조를 적용한 새로운 광 공간 스위치의 성능 분석)

  • 전인중;정준영;김세환;정제명;신서용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.11C
    • /
    • pp.1139-1151
    • /
    • 2002
  • In this paper, we propose the novel module-type optical space switch, employing time division multiplexing (TDM) method and multihop structure, in order to enlarge the capacity of the switching system. And we show that the proposed structure is superior over conventional ones, in terms of power loss, the number of the devices used, and signal to crosstalk (SXR). We also analyze the saturation throughput with the number of module M. As a result, the saturation throughput of the switching system with M modules is M+ 1-√(M$^2$+1), when the number of input port in a module (N) is large. Finally, we confirmed the cell loss rate (CLR) performance with the proposed switch through simulation. For example, when p=0.9, M=8 and N=32, to get the CLR that is less than or equal to 10$\^$-6/, the number of input buffers storage unit is greater than or equal to 6 and output buffers storage unit is greater than or equal to 52.

Thermal Analysis and Design of AlGaInP-based Light Emitting Diode Arrays

  • Ban, Zhang;Liang, Zhongzhu;Liang, Jingqiu;Wang, Weibiao;JinguangLv, JinguangLv;Qin, Yuxin
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • LED arrays with pixel numbers of $3{\times}3$, $4{\times}4$, and $5{\times}5$ have been studied in this paper in order to enhance the optical output power and decrease heat dissipation of an AlGaInP-based light emitting diode display device (pixel size of $280{\times}280{\mu}m$) fabricated by micro-opto-electro-mechanical systems. Simulation results showed that the thermal resistances of the $3{\times}3$, $4{\times}4$, $5{\times}5$ arrays were $52^{\circ}C/W$, $69.7^{\circ}C/W$, and $84.3^{\circ}C/W$. The junction temperature was calculated by the peak wavelength shift method, which showed that the maximum value appears at the center pixel due to thermal crosstalk from neighboring pixels. The central temperature would be minimized with $40{\mu}m$ pixel pitch and $150{\mu}m$ substrate thickness as calculated by thermal modeling using finite element analysis. The modeling can be used to optimize parameters of highly integrated AlGaInP-based LED arrays fabricated by micro-opto-electro-mechanical systems technology.

40channel Arrayed Waveguide Grating with O.75delta% Refractive Index (0.75Δ% 굴절율차를 가진 40채널 광파장 다중화 및 역다중화 소자 제작 및 특성)

  • Moon, H.M.;Choi, G.S.;Lee, K.H.;Kim, D.H.;Lee, J.H.;Lee, D.H.;Oh, J.K;Kwak, S.C.;Kwon, O.K.;Kang, D.S.;Choi, J.S.;Jong, G;Lee, H.Y.
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.196-200
    • /
    • 2005
  • A 40 channel arrayed-waveguide grating (AWG) filter operating in C-band and L-band wavelength regions has been fabricated using PLC (Planar Lightwave Circuit) processes with 0.75 refractive index difference. Its design was optimized for matching the center wavelength with the ITU-recommended wavelength. The characteristics of the fabricated C-band AWG are as follows; average insertion loss < 2.5 dB, polarization-dependent loss < 0.3 dB, non-adjacent crosstalk >35dB, and the loss uniformity of 0.8 dB. In the L-band AWG, wavelength accuracy is below 0.02nm.

Integrated Photonic Channel Selective Microwave Bandpass Filter Incorporating a 1×2 Switch Based on Tunable Polymeric Ring Resonators (폴리머 링 공진기 기반의 스위치를 이용한 집적광학 채널 선택 마이크로웨이브 대역통과 필터)

  • Kim, Gun-Duk;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.79-83
    • /
    • 2007
  • A reconfigurable photonic microwave (MW) channel selective filter was demonstrated incorporating a $1{\times}2$ switch based on two tunable polymeric resonators with different free spectral ranges. Each resonator, consisting of two cascaded rings with an electrode formed on one of them, plays a role as an on/off switch through the thermooptic effect. The optical signal carrying the MW signal is routed to either port of the switch and detected to show the filtered output at the frequency determined by the free spectral range of the corresponding resonator. When the channel centered at 10 GHz was chosen, the extinction ratio was ${\sim}30dB$, the bandwidth 1 GHz, and the electrical power consumption 4.1 mW. For the other channel located at 20 GHz, we have achieved the extinction ratio of ${\sim}30dB$, the bandwidth of 2 GHz, and the required power of 8.0 mW. Finally the crosstalk between the selected and blocked channels was higher than 24 dB.

Modeling and fabrication of $1.31/1.55\mu\textrm{m}$ coarse WDM optical directional coupler using $Ag^+-Na^+$ ion-exchanged glass ($Ag^+-Na^+$이온교환법을 이용한 $1.31/1.55\mu\textrm{m}$ 두파장 방향성 광 결합기의 모델링 및 제작)

  • 강동성
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.335-339
    • /
    • 2000
  • A $1.31/1.55\mu\textrm{m}$ coarse WDM opncal dIrectional coupler that conslsls of two idenlical straight channel waveguides in BK7 glass has been fabricated. The separatIOn between two channel waveguides is $8\mu\textrm{m}$ and the wavegu.ide width is $4\mu\textrm{m}$ . Especlally, we assumed that the index profile is Gaussian function and complementary error function in the width direction and depth direction, respectrvely. This directional coupler operating at $1.31/1.55\mu\textrm{m}$ with crosstalk of 18dB is demonstrated and has the 16 mm long length with 12.6 mm coupling region.region.

  • PDF

AWG device characteristic dependence on the fabrication error limit (도파폭 공정오차에 따른 광도파 특성변화와 소자성능 저하)

  • 박순룡;오범환
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.342-347
    • /
    • 1999
  • As the waveguide width and the radius of curvature get smaller for the effort of monolithic fabrication of integrated photonic devices, the waveguide characteristics change significantly according to the change of the waveguide width or the radius of curvature. Especially, variation of the waveguide width due to fabrication process errors induces a phase error for each waveguide from the change of the propagation constant. Therefore, it is important to quantify these variation effects on the device characteristics for the design and fabrication of highly integrated photonic devices. Here, we analyze four different types of waveguides to get general characteristics in propagation constant change by utilizing the effective index method and the analytic solution method. Futhermore, the output characteristics of two AWG(Arrayed Waveguide Grating) devices are simulated by a highly-functional computer code. The simulated results have been found to be similar to the realistic device characteristics. The required fabrication error limit for the ridge-type InP-AWG device should be smaller than 0.02 ${\mu}{\textrm}{m}$ to get better channel crosstalk than-25 dB, while the required fabrication error limit for rib-type silica-AWG devices may be allowed up to 0.1 ${\mu}{\textrm}{m}$ to obtain better crosstalk than -30 dB.

  • PDF