DOI QR코드

DOI QR Code

Integrated Photonic Channel Selective Microwave Bandpass Filter Incorporating a 1×2 Switch Based on Tunable Polymeric Ring Resonators

폴리머 링 공진기 기반의 스위치를 이용한 집적광학 채널 선택 마이크로웨이브 대역통과 필터

  • Kim, Gun-Duk (Department of Electronic Engineering, Kwaqngwoon University) ;
  • Lee, Sang-Shin (Department of Electronic Engineering, Kwaqngwoon University)
  • Published : 2007.02.25

Abstract

A reconfigurable photonic microwave (MW) channel selective filter was demonstrated incorporating a $1{\times}2$ switch based on two tunable polymeric resonators with different free spectral ranges. Each resonator, consisting of two cascaded rings with an electrode formed on one of them, plays a role as an on/off switch through the thermooptic effect. The optical signal carrying the MW signal is routed to either port of the switch and detected to show the filtered output at the frequency determined by the free spectral range of the corresponding resonator. When the channel centered at 10 GHz was chosen, the extinction ratio was ${\sim}30dB$, the bandwidth 1 GHz, and the electrical power consumption 4.1 mW. For the other channel located at 20 GHz, we have achieved the extinction ratio of ${\sim}30dB$, the bandwidth of 2 GHz, and the required power of 8.0 mW. Finally the crosstalk between the selected and blocked channels was higher than 24 dB.

본 논문에서는 서로 다른 FSR (free spectral range)을 갖는 두 개의 가변 (tunable) 폴리머 링 공진기 기반의 $1{\times}2$ 스위치를 이용하여 광학적 방식의 채널 선택이 가능한 재구성형 (reconfigurable) 마이크로웨이브 (microwave: MW) 필터를 제안하고 구현하였다. 각 링 공진기는 두 개의 링이 연결되어 있으며 한 개의 링 위에 전극이 형성되어 있으며, 이 전극에 전압을 인가함으로써 열광학효과를 통해 On/Off 스위치로서 동작된다. 입력 MW 신호에 의해서 변조된 광신호를 이 스위치를 통해 특정 포트로 라우팅(routing)하고 광검출기를 통해 복원함으로써 두 개의 채널이 선택되는 MW 대역통과 필터 특성을 얻었다. 중심주파수가 10 GHz인 채널 I 이 선택된 경우, 소멸비는 ${\sim}30dB$, 대역폭은 1 GHz, Q값은 10, 최대 소비전력은 4.1 mW였다. 그리고 중심주파수가 20 GHz인 채널II가 선택된 경우에는 소멸비는 ${\sim}30dB$, 대역폭은 2 GHz, Q값은 10, 최대 소비전력은 8 mW였으며, 각 채널 간의 격리도는 24 dB 이상이었다.

Keywords

References

  1. A. Seeds, 'Microwave photonics,' IEEE Trans. Microwave Theory Tech., vol. 50, pp. 877-887, 2002 https://doi.org/10.1109/22.989971
  2. J. Capmany, D. paster, B. Ortega, J. Mora, and M. Andres, 'Photonic processing of microwave signals,' IEEE Proc. Optoelectron., vol. 152, pp. 299-320, 2005 https://doi.org/10.1049/ip-opt:20050018
  3. J. Capmany, B. Ortega, and D. Pastor, 'A tutorial on microwave photonic filters,' J. Lightwave Technol., vol. 24, no. 1, pp. 201-229, 2006 https://doi.org/10.1109/JLT.2005.860478
  4. M. Y. Frankel and R. D. Esman, 'Fiber-optic tunable microwave transversal filter,' IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 191-193, 1995 https://doi.org/10.1109/68.345919
  5. D. B. Hunter and R. A. Minasian, 'Microwave optical filters using in-fiber Bragg grating arrays,' IEEE Microwave Guided Wave Lett., vol. 6, no. 2, pp. 103-105, 1996 https://doi.org/10.1109/75.482003
  6. H. H. Chen, M. Guizani, 'Next generation wireless systems and networks,' Wiley, 2006
  7. S. Hontsu, S. Mine, H. Nishikawa, M. Nakamori, A. Fujimaki, M. Inoue, A. Maehara and T. Kawai, 'Study of mechanically tunable superconducting microwave filter using lumped elements,' IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 720-723, 2003 https://doi.org/10.1109/TASC.2003.814014
  8. M. K. Roy, C. Kalmar, R. R. Neurgaonkar, J. R. Oliver and D. Dewing, 'A highly tunable radio frequency filter using bulk ferroelectric materials,' Proc. 14th IEEE International symposium on applications of ferroelectrics IASF-04, pp. 25-28, Aug. 2004 https://doi.org/10.1109/ISAF.2004.1418329
  9. B. Vidal, V. Polo, J. L. Corral and J. Marti, 'Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media,' Electron. Lett., vol. 39, no. 6, pp. 547-549, 2003 https://doi.org/10.1049/el:20030357
  10. M. Delgado-Pinar, J. Mora, A. Diez, M. V. Andres, B. Ortega and J. Capmany, 'Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acoustooptic superlattice modulaor,' Opt. Lett., vol. 30, no. 1, pp. 8-10, 2005 https://doi.org/10.1364/OL.30.000008
  11. A. Yariv, 'Universal relations for coupling of optical power between microresonators and dielectric waveguides,' Electron. Lett., vol. 36, no. 4, pp. 321-322, 2000 https://doi.org/10.1049/el:20000340
  12. D. Geuzebroek, E. Klein, H. Kelderman, N. Baker and A. Driessen, 'Compact wavelength-selective switch for gigabit filtering in access networks,' IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 336-338, 2005 https://doi.org/10.1109/LPT.2004.839451
  13. S. Yamagata, T. Kato and Y. Kokubun, 'Non-blocking wavelength channel switch using TO effect of doubles series coupled microring resonator,' Electron. Lett., vol. 41, no. 10, pp. 593-595, 2005 https://doi.org/10.1049/el:20051008
  14. W. J. Chin, D. H. Kim, J. H. Song and S. S. Lee, 'Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,' Jpn. J. Appl. Phys., vol. 45, no. 4A, pp. 2576-2579, 2006 https://doi.org/10.1143/JJAP.45.2576

Cited by

  1. Widely Tunable Double-Ring-Resonator Add/Drop Filter vol.18, pp.3, 2007, https://doi.org/10.3807/HKH.2007.18.3.216