• Title/Summary/Keyword: Optical communications

Search Result 922, Processing Time 0.03 seconds

Specialty Fiber Coupler: Fabrications and Applications

  • Lee, Byeong-Ha;Eom, Joo-Beom;Park, Kwan-Seob;Park, Seong-Jun;Ju, Myeong-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2010
  • We review the research on specialty fiber couplers with emphasis placed on the characteristics that make them attractive for biomedical imaging, optical communications, and sensing applications. The fabrication of fiber couplers has been carried out with, in addition to conventional single mode fiber, various specialty fibers such as photonic crystal fiber, double clad fiber, and hole-assisted fiber with a Ge-doped core. For the fiber coupler fabrication, the side polishing and the fused biconical tapered methods have been developed. These specialty fiber couplers have been applied to optical coherence tomography, fluorescence spectroscopy, fiber sensors, and optical communication systems. This review aims to provide a detailed statement on the recent progress and novel applications of specialty fiber couplers.

Efficient Cross-Room Switch Mechanism for Indoor Room-Division-Multiplexing Based Visible Light Communication Network

  • Huang, Zhitong;Xiong, Jieqing;Li, Jianfeng;Ji, Yuefeng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.351-356
    • /
    • 2015
  • Visible light communication (VLC) is considered to be an attractive scheme to realize the broadband wireless communication for an indoor environment. We present a room division multiplexing (RDM) mechanism for an indoor multi-room VLC network, which utilizes the spatial position of the LED lamp in different rooms as a novel dimension of network resource for multiplexing, and thus the network capacity is increased. In such a network, the service interruption caused by user cross-room movement is an important problem, and we propose a double-area-positioning based cross-room switch solution. An experimental platform demonstrates the RDM-deployed VLC network, and validates the performance of the presented switch mechanism.

The Fabrication of a Photonic Crystal Fiber and Measurement of its Properties

  • Kim, Jin-Chae;Kim, Ho-Kyung;Paek, Un-Chul;Lee, Byeong-Ha;Eom, Joo-Beom
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.79-83
    • /
    • 2003
  • In this paper, we describe the fabrication process of a photonic crystal fiber and present the measured optical properties of the photonic crystal fiber. The fabrication of the photonic crystal fiber involves stacking, jacketing, collapsing, and drawing using a conventional drawing tower The photonic crystal fiber drawing needs higher tension to maintain the uniform air hole structure. Thus, the temperature of the photonic crystal fiber drawing is lowered by a few hundred degrees Celsius than for the case of conventional optical fiber drawing. The optical properties of the fabricated photonic crystal fiber such as mode profile, optical loss, transmission spectrum, bending loss, and polarization dependent loss are measured.

Cost-Effective Transition to 40 Gb/s Line Rate Using the Existing 10 Gb/s-Based DWDM Infrastructure

  • Lee, Sang-Soo;Cho, Hyun-Woo;Lim, Sang-Kyu;Lee, Dong-Soo;Yoon, Kyeong-Mo;Lee, Yong-Gi;Kim, Kwang-Joon;Ko, Je-Soo
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.261-267
    • /
    • 2008
  • In this paper, we propose and demonstrate a cost-effective technique to upgrade the capacity of dense wavelength division multiplexing (DWDM) networks to a 40 Gb/s line rate using the existing 10 Gb/s-based infrastructure. To accommodate 40 Gb/s over the link optimized for 10 Gb/s, we propose applying a combination of super-FEC, carrier-suppressed return-to-zero, and pre-emphasis to the 40 Gb/s transponder. The transmission of 40 Gb/s DWDM channels over existing 10 Gb/s line-rate long-haul DWDM links, including $40{\times}40$ Gb/s transmission over KT's standard single-mode fiber optimized for 10 Gb/s achieves successful results. The proposed upgrading technique allows the Q-value margin for a 40 Gb/s line rate to be compatible with that of 10 Gb/s.

  • PDF

OATM/WDM Optical Access Network Using Header Decoder-Based Router for Next-Generation Communications

  • Park, Kihwan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.335-342
    • /
    • 2016
  • We demonstrate an optical asynchronous transfer mode/wavelength division multiplexing (OATM/WDM) optical access network, using a router based on an optical header decoder to conduct next-generation communications. The router consists of a decoder or hardware analysis processing of the header bit and switches. The router in the OATM/WDM optical access network is a key technology by which to satisfy subscribers’ requests, including reliability, cost efficiency, high speed, large-capacity transmission, and elevated information security. In this study, we carry out experiments in which a header decoder delivers to 16 and 32 subscribers with a single wavelength in the router. These experiments confirm the decoder’s successful operation via hardware using 4 and 5 header bits. We propose that this system may significantly contribute toward the realization of an optical access network that provides high-quality service to subscribers of next-generation communications.

Design of 2-dimensional trackling optical receiver systems for optical wireless mobile communications (광 무선 이동통신용 2차원 추적 광학 수신계 설계)

  • Park, Seung-Hyun;Lee, Dong-Suk;Kim, Kyung-Hun;Lee, Ill-Hang
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.07a
    • /
    • pp.28-29
    • /
    • 2004
  • Optical wireless mobile communications have the potential to provide wide bandwidth and security . We have proposed and designed the 2-dimensional tracking optical receiver systems for optical wireless mobile communication. The receiver system consist of 4${\times}$4 photodiode array can receive optical signal from the transmitter. The room size is 5${\times}$5m$^2$ and the room height is 3m.

  • PDF

Polymer-Based Devices for Optical Communications

  • Lee, Myung-Hyun;Ju, Jung-Jin;Park, Sun-Tak;Do, Jung-Yun;Park, Seung-Koo
    • ETRI Journal
    • /
    • v.24 no.4
    • /
    • pp.259-269
    • /
    • 2002
  • Polymers are emerging as new alternative materials for optical communication devices. We developed two types of polymer-based devices for optical communications. One type is for ultra high-speed signal processing that uses nonlinear optical (NLO) polymers in such devices as electro-optic (EO) Mach-Z${\ddot{e}} $ hnder (MZ) modulators and EO 2${\times}$2 switches. The other is for WDM optical communications that use low-loss optical polymers in such devices as 1${\times}$2, 2${\times}$2, 4-arrayed 2${\times}$2 digital optical switches (DOSs) and 16${\times}$16 arrayed waveguide grating (AWG) routers. For these devices, we synthesized a polyetherimide-disperse red 1 (PEI-DR1) side chain NLO polymer and a low-loss optical polymer known as fluorinated polyaryleneethers (FPAE). This paper presents the details of our development of these polymeric photonic devices considering all aspects from materials to packaging.

  • PDF

Delay Measurement and Split-Step Time-Domain Analysis of Ring Resonator All-Pass Filters

  • Kim, Hyosuk;Ko, Yoonyoung;Moon, Hyunseung;Kim, Jaeseong;Chung, Youngchul
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.766-771
    • /
    • 2014
  • Single-ring all-pass filters with various coupling ratios are designed, fabricated, and characterized to assess the validity of the split-step time-domain modeling approach, which is considered for direct simulation of time-domain characteristics, such as optical delay, of various ring resonator devices. When the coupling ratio of the single-ring all-pass filter is 0.4 and 0.8, the delay time is measured to be about 145 and 42 ps respectively, which is comparable to the time-domain modeling results of 151 and 47 ps respectively. The measurements for two- and three-ring all-pass filters are also found to agree quite well with the simulation results. With these results it is confirmed that the split-step time-domain model could be efficiently incorporated into an optical-communication simulation module for ring resonator delay components in an all-optical packet switching system.

Effect of Filter Parameters on a Supercontinuum-Based All-Optical Tunable Thresholder

  • Zhu, Huatao;Wang, Rong;Pu, Tao;Fang, Tao;Xiang, Peng;Zhu, Huihui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.470-475
    • /
    • 2016
  • In this paper, the effects of filter parameters on a supercontinuum-based all-optical thresholder are experimentally investigated. By tuning the filter parameters, the power transfer function and power transmission function are tailored. The experimental results show that a thresholder with short center wavelength has a better power function, and the slope in the middle level of the thresholder increases with increasing bandwidth. Through tuning the filter parameters, the thresholder can achieve a steplike power transfer function for optical thresholding, and a steplike power transmission function for optical self-switching. This makes the supercontinuum-based thresholder more flexible, and allows customization of performance to meet different demands in various applications.

Effect of Mirror Misalignments on Optical Ray Path In a Ring Resonator

  • Lee, Dong-Chan;Lee, Jae-Cheul;Son, Seong-Hyun;Cho, Hyun-Ju
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.121-127
    • /
    • 2002
  • The operating principal of a ring laser gyroscope depends on the phase difference for the counter-propagating waves within a closed path. The reflecting mirrors mounted on the monoblock form the traveling waves. The manufacturing accuracy of the monoblock influences the traveling path of ray, the sensitivity of laser resonator for misalignments, and diffraction losses. A 3 $\times$ 3 ray transfer matrix was derived for optical components with centering and squaring errors in a ring resonator. The matrix can be utilized to predict the optical ray paths on the basis of the manufacturing errors of the monoblock as well as the misalignment of mirrors. Then the distance and orientation (o. slope) at the arbitrary plane inside the resonator along the ideal optical path can be calculated from the chain multiplication of the ray transfer matrix for each optical component in one round trip. We also show that the counter-propagating rays In a ring resonator with errors does not coincide in each round trip, which results in gain difference between two beams, and how these errors can be adjusted through the alignment procedure. Finally this 3 $\times$ 3 ray matrix formalism can be used to calculate the beam size and its displacement from the optical axis and the deviation at the diaphragm.