Browse > Article
http://dx.doi.org/10.3807/JOSK.2003.7.2.079

The Fabrication of a Photonic Crystal Fiber and Measurement of its Properties  

Kim, Jin-Chae (Department of Information and Communications, Kwangju Institute of Science and Technology)
Kim, Ho-Kyung (Department of Information and Communications, Kwangju Institute of Science and Technology)
Paek, Un-Chul (Department of Information and Communications, Kwangju Institute of Science and Technology)
Lee, Byeong-Ha (Department of Information and Communications, Kwangju Institute of Science and Technology)
Eom, Joo-Beom (Korea Photonuc Technology Institute)
Publication Information
Journal of the Optical Society of Korea / v.7, no.2, 2003 , pp. 79-83 More about this Journal
Abstract
In this paper, we describe the fabrication process of a photonic crystal fiber and present the measured optical properties of the photonic crystal fiber. The fabrication of the photonic crystal fiber involves stacking, jacketing, collapsing, and drawing using a conventional drawing tower The photonic crystal fiber drawing needs higher tension to maintain the uniform air hole structure. Thus, the temperature of the photonic crystal fiber drawing is lowered by a few hundred degrees Celsius than for the case of conventional optical fiber drawing. The optical properties of the fabricated photonic crystal fiber such as mode profile, optical loss, transmission spectrum, bending loss, and polarization dependent loss are measured.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Kim, U.-C. Paek, D. Y. Kim, and Y. Chung, “Analysis of the dispersion properties of holey optical fibers using normalized dispersion,” in Optical Fiber Communication Conference vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), WDD86.   DOI
2 N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: Measurement and future opportunities,” Opt. Lett., vol. 24, pp. 1395−1397, 1999; Opt. Lett., vol. 24, no. 20, p. 1647, 1999.   DOI
3 A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol 25, no. 18, pp. 1325−1327, 2000.   DOI
4 J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A, vol. 15, no. 3, pp. 748−752, 1998.   DOI   ScienceOn
5 M. C. Carlson, “Measuring Polarization-Dependent Loss with the IQ-12004B DWDM Passive Component Test System,” EXFO Application Note, ANOTE050.1AN, 2001, http://documents.exfo.com/appnotes/anote050an.pdf.
6 J. C. Knight, T. A. Birks, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961−963, 1997.   DOI
7 T. M. Monro, D. J. Richarson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: An efficient modal model,” IEEE J. Lightwave Technol., vol. 17, no. 6, pp. 1093−1102, 1999.   DOI   ScienceOn
8 D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett., vol. 23, no. 21, pp. 1662−1664, 1999.   DOI
9 S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett., vol. 26, no. 17, pp. 1356−1358, 2001.   DOI
10 B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, and G.-H. Yang, “Photonic crystal fiber coupler,” Opt. Lett., vol. 27, no. 10, pp. 812−814, 2002.   DOI
11 Y. Dogu, and D. A. Kaminski, “Effects of eccentricity on glass temperature in the neck-down stage of the optical fiber drawing process,” Proceedings of the ASME Heat Transfer Division, vol. 1, pp. 89−100, 1997.
12 J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett., vol. 25, no. 1, pp. 25−27, 2000.   DOI
13 J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett., vol. 34, no. 13, pp. 1347−1348, 1998.   DOI   ScienceOn
14 T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using singlematerial fibers,” IEEE Photon. Technol. Lett., vol. 11, no. 6, pp. 674−676, 1999.   DOI   ScienceOn
15 M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett., vol. 35, no. 1, pp. 63−64, 1999.   DOI   ScienceOn
16 W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett., vol. 36, no. 1, pp. 53−54, 2000.   DOI   ScienceOn
17 B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fiber,” J. Lightwave Technol., vol. 18, no. 8, pp. 1084−1100, 2000.   DOI   ScienceOn
18 A. K. Varshneya, Fundamentals of inorganic glasses (Academic press, New York, 1994).
19 T. Sorensen, J. Broeng, A. Bjarklev, E. Kundsen, and E. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett., vol. 37, no. 5, pp. 287−288, 2001.   DOI   ScienceOn