• Title/Summary/Keyword: Optical approach

Search Result 717, Processing Time 0.025 seconds

Characteristics of Workers' Exposure to Aerosolized Particles during the Production of Carbon Nanotube-enabled Composites (탄소나노튜브 복합체 취급 작업자의 공기 중 입자상 물질 노출 특성)

  • Kwon, Jiwoon;Kim, Sungho;Jang, Miyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: The purpose of this case study is to assess workers' exposure to carbon nanotubes(CNTs) and characterize particles aerosolized during the process of producing CNT-enabled polytetrafuoroethylene(PTFE) composites at a worksite in Korea. Methods: Personal breathing zone and area samples were collected for determining respirable concentrations of elemental carbon(EC) using NIOSH(National Institute for Occupational Safety and Health) Method 5040. Personal exposure to nano-sized particles was measured as the number concentration and mean diameter using personal ultrafine particle monitors. The number concentration by particle size was measured using optical particle sizers(OPS) and scanning mobility particle sizers(SMPS). Transmission electron microscopy (TEM) area samples were collected on TEM grids and analyzed to characterize the size, morphology, and chemistry of the particles. Results: Respirable EC concentrations ranged from 0.04 to 0.24 ㎍/㎥, which were below 23% of the exposure limit recommended by NIOSH and lower than background concentrations. Number concentrations by particle size measured using OPS and SMPS were not noticeably elevated during CNT-PTFE composite work. Instant increase of number concentrations of nano-sized particles was observed during manual sanding of CNT-PTFE composites. Both number concentrations and mean diameters did not show a statistically significant difference between workers handing CNT-added and not-added materials. TEM analyses revealed the emission of free-standing CNTs and CNT-PTFE aggregate particles from the powder supply task and composite particles embedded with CNTs from the computer numerical control(CNC) machining task with more than tens of micrometers in diameter. No free-standing CNT particles were observed from the CNC machining task. Conclusions: Significant worker exposure to respirable CNTs was not found, but the aerosolization of CNTs and CNT-embedded composite particles were observed during handing of CNT-PTFE powders and CNC machining of CNT-PTFE composites. Considering the limited knowledge on the toxicity of CNTs and CNT composite particles to date, it seems prudent to take a precautionary approach for the protection of workers' health.

Simultaneous Transfer and Patterning of CVD-Grown Graphene with No Polymeric Residues by Using a Metal Etch Mask

  • Jang, Mi;Jeong, Jin-Hyeok;Trung, T.Q.;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.642-642
    • /
    • 2013
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as high electron mobility, high thermal conductivity and optical transparency. Especially, chemical vapor deposition (CVD) grown graphene has been used as a promising material for high quality and large-scale graphene film. Unfortunately, although CVD-grown graphene has strong advantages, application of the CVD-grown graphene is limited due to ineffective transfer process that delivers the graphene onto a desired substrate by using polymer support layer such as PMMA(polymethyl methacrylate). The transferred CVD-grown graphene has serious drawback due to remaining polymeric residues generated during transfer process, which induces the poor physical and electrical characteristics by a p-doping effect and impurity scattering. To solve such issue incurred during polymer transfer process of CVD-grown graphene, various approaches including thermal annealing, chemical cleaning, mechanical cleaning have been tried but were not successful in getting rid of polymeric residues. On the other hand, lithographical patterning of graphene is an essential step in any form of microelectronic processing and most of conventional lithographic techniques employ photoresist for the definition of graphene patterns on substrates. But, application of photoresist is undesirable because of the presence of residual polymers that contaminate the graphene surface consistent with the effects generated during transfer process. Therefore, in order to fully utilize the excellent properties of CVD-grown graphene, new approach of transfer and patterning techniques which can avoid polymeric residue problem needs to be developed. In this work, we carried out transfer and patterning process simultaneously with no polymeric residue by using a metal etch mask. The patterned thin gold layer was deposited on CVD-grown graphene instead of photoresists in order to make much cleaner and smoother surface and then transferred onto a desired substrate with PMMA, which does not directly contact with graphene surface. We compare the surface properties and patterning morphology of graphene by scanning electron microscopy (SEM), atomic force microscopy(AFM) and Raman spectroscopy. Comparison with the effect of residual polymer and metal on performance of graphene FET will be discussed.

  • PDF

Retrieval of Vertical Single-scattering albedo of Asian dust using Multi-wavelength Raman Lidar System (다파장 라만 라이다 시스템을 이용한 고도별 황사의 단산란 알베도 산출)

  • Noh, Youngmin;Lee, Chulkyu;Kim, Kwanchul;Shin, Sungkyun;Shin, Dongho;Choi, Sungchul
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • A new approach to retrieve the single-scattering albedo (SSA) of Asian dust plume, mixed with pollution particles, using multi-wavelength Raman lidar system was suggested in this study. Asian dust plume was separated as dust and non-dust particle (i.e. spherical particle) by the particle depolarization ratio at 532 nm. The vertical profiles of optical properties (the particle extinction coefficient at 355 and 532 nm and backscatter coefficient at 355, 532 and 1064 nm) for non-dust particle were used as input parameter for the inversion algorithm. The inversion algorithm provides the vertical distribution of microphysical properties of non-dust particle only so that the estimation of the SSA for the Asian dust in mixing state was suggested in this study. In order to estimate the SSA for the mixed Asian dust, we combined the SSA of non-dust particles retrieved by the inversion algorithms with assumed the SSA of 0.96 at 532 nm for dust. The retrieved SSA of Asian dust plume by lidar data was compared with the Aerosol Robotics Network (AERONET) retrieved values and showed good agreement.

Refractometric Glucose Biosensor Incorporating a Vertically Coupled Microring Resonator in Polymeric Waveguides (수직형 폴리머 마이크로링 공진기 기반의 글루코스 바이오 센서)

  • Kim, Gun-Duk;Son, Keun-Sik;Lee, Hak-Soon;Kim, Ki-Do;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.127-131
    • /
    • 2008
  • A refractometric glucose biosensor incorporating a vertically coupled microring resonator in polymers was proposed and realized. The ring was covered with a target analyte of glucose solution with a certain concentration, so that its effective refractive index could be altered and, as a result, the resonance wavelength of the sensor was shifted. Therefore the concentration of the glucose solution can be estimated by observing the shift in the resonance wavelength. Two schemes were exploited for enhancing the sensitivity of the sensor. First, the effective refractive index of the polymeric waveguide used for the resonator sensor was adjusted to approach that of the target analyte as best as possible. Second, the ring waveguide, which serves as a crucial sensing part, was appropriately over-etched to enlarge its contact area with the analyte. The proposed resonator sensor was designed with the beam propagation method. The refractive indices of the core and cladding polymer involved were 1.430 and 1.375 respectively, leading to the waveguide's effective refractive index of ${\sim}1.390$, which is faiirly close to that of the glucose solution of ${\sim}1.333$. The prepared ring resonator with the $400-{\mu}m$ radius exhibited the free spectral range of 0.66 nm, the bandwidth of 0.15 nm, and the quality factor of 10,000. For the sensor operating at 1,550 nm wavelength, the achieved sensitivity was as great as 0.28 pm/(mg/dL), which is equivalent to 200 nm/RIU.

An Experimental Approach to Evaluate the Desulfurization Yield in Spray Drying Sorber (반건식 세정기의 산성가스 제거성능에 관한 실험적 연구)

  • Yang, Hyun-Mo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.589-598
    • /
    • 2000
  • A pilot-scale Spray Drying Sorber (SDS) system was set up to evaluate the effect of spray characteristics on the desulfurization yield. The size distribution and the Sauter Mean Diameters of slurry droplets were measured in advance using the optical size measurement system, Malvern 2600. The desulfurization yield of the drying chamber by size was measured for the conditions of inlet gas and spray injection. As a reagent, 10% limestone slurry of $Ca(OH)_2$ was treated with flue gas containing $SO_2$, and the combustion gas analyzer and gas detectors were attached to measure the $SO_2$ concentration. With a flow rate of 144 Nm3/h and a temperature range of $200{\sim}300^{\circ}C$, the experiments were performed for the Stoichiometric Ratio (SR) of 1.0 to 3.0 and droplet mean diameter of 6.5 to $34.3{\mu}m$. In case of smaller spray droplets, the desulfurization efficiency improved due to the increase of total droplet surface area, while the reduction in evaporation time reduced the contact time between the droplets and $SO_2$ gas. In some typical region of droplet diameter, this negative effect, reduction of contact time, became dominant and the desulfurization yield decreases the desulfurization yield in spite of the expansion in absorption area. These results revealed that there exists the optimal size of spray droplets for a given state, which is determined by the compromise between the total surface area of slurry droplets and the evaporation time of droplets. The measurements also indicated that the inlet temperature of flue gas changes the optimal injection condition by varying the driving force for evaporation. The results confirm that the effect of the evaporation time of slurry droplets should be considered in analyzing the desulfurization yield as well as the total surface area, for it is a significant aspect of the correlation with the capabilities of $SO_2$ absorption in wet droplets. In conclusion, the optimal condition of spray can be determined based on these results, which might be applied to design or scale-up of SDS system.

A Multi-Wavelength Study of Galaxy Transition in Different Environments (다파장 관측 자료를 이용한 다양한 환경에서의 은하 진화 연구)

  • Lee, Gwang-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.34.2-35
    • /
    • 2018
  • Galaxy transition from star-forming to quiescent, accompanied with morphology transformation, is one of the key unresolved issues in extragalactic astronomy. Although several environmental mechanisms have been proposed, a deeper understanding of the impact of environment on galaxy transition still requires much exploration. My Ph.D. thesis focuses on which environmental mechanisms are primarily responsible for galaxy transition in different environments and looks at what happens during the transition phase using multi-wavelength photometric/spectroscopic data, from UV to mid-infrared (MIR), derived from several large surveys (GALEX, SDSS, and WISE) and our GMOS-North IFU observations. Our multi-wavelength approach provides new insights into the *late* stages of galaxy transition with a definition of the MIR green valley different from the optical green valley. I will present highlights from three areas in my thesis. First, through an in-depth study of environmental dependence of various properties of galaxies in a nearby supercluster A2199 (Lee et al. 2015), we found that the star formation of galaxies is quenched before the galaxies enter the MIR green valley, which is driven mainly by strangulation. Then, the morphological transformation from late- to early-type galaxies occurs in the MIR green valley. The main environmental mechanisms for the morphological transformation are galaxy-galaxy mergers and interactions that are likely to happen in high-density regions such as galaxy groups/clusters. After the transformation, early-type MIR green valley galaxies keep the memory of their last star formation for several Gyr until they move on to the next stage for completely quiescent galaxies. Second, compact groups (CGs) of galaxies are the most favorable environments for galaxy interactions. We studied MIR properties of galaxies in CGs and their environmental dependence (Lee et al. 2017), using a sample of 670 CGs identified using a friends-of-friends algorithms. We found that MIR [3.4]-[12] colors of CG galaxies are, on average, bluer than those of cluster galaxies. As CGs are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends can also be seen for neighboring galaxies around CGs. However, CG members always have larger early-type fractions and bluer MIR colors than their neighboring galaxies. These results suggest that galaxy evolution is faster in CGs than in other environments and that CGs are likely to be the best place for pre-processing. Third, post-starburst galaxies (PSBs) are an ideal laboratory to investigate the details of the transition phase. Their spectra reveal a phase of vigorous star formation activity, which is abruptly ended within the last 1 Gyr. Numerical simulations predict that the starburst, and thus the current A-type stellar population, should be localized within the galaxy's center (< kpc). Yet our GMOS IFU observations show otherwise; all five PSBs in our sample have Hdelta absorption line profiles that extend well beyond the central kpc. Most interestingly, we found a negative correlation between the Hdelta gradient slopes and the fractions of the stellar mass produced during the starburst, suggesting that stronger starbursts are more centrally-concentrated. I will discuss the results in relation with the origin of PSBs.

  • PDF

Material Retention: A Novel Approach to Performance of Pigment Coating Colors (물질 보류 : 안료 코팅 처리를 위한 새로운 시도)

  • McKenzie, Ken;Rutanen, Anne;Lehtovuori, Jukka;Ahtikari, Jaana;Piilola, Teuvo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.47-70
    • /
    • 2008
  • Cost efficiency is today the primary requirement in the paper and board industry. This has led therefore, to a greater preponderance of products with specifically designed functionality to take account of current industry needs. Continually increasing machine coating speeds together with these new coating colour components have put more emphasis on the importance of the correct rheology and water retention of the coating colours to achieve good runnability and end product quality. In the coating process, some penetration of the aqueous phase, to the base paper or board must occur to anchor the pre-coating to the base or the topcoat to the pre-coat. The aqueous phase acts as a vehicle not only for the binder, but also for the other components. If this water or material penetration is not controlled, there will be excessive material shift from the coating colour to the base, before immobilization of the coating colour will stop this migration. This can result in poor machine runnability, unstable system and uneven coating layer, impacting print quality. The performance of rheology modifiers or thickeners on the coating color have tended to be evaluated by the term, "water retention". This simple term is not sufficient to explain their performance changes during coating. In this paper we are introducing a new concept of "material retention", which takes note of the total composition of the coating colour material and therefore goes beyond the concept of only water retention. Controlled material retention leads to a more uniform z-directional distribution of coating colour components. The changes that can be made to z-directional uniformity will have positive effects on print quality as measured by surface strength, ink setting properties, print gloss, mottling tendency. Optical properties, such as light scattering, whiteness and light fastness delivery should also be improved. Additionally, controlled material retention minimizes changes to the coating colour with time in re-circulation giving less fluctuation in quality in the machine direction since it more closely resembles fresh coating for longer periods. Use of the material retention concept enables paper and board producers to have more stable runnability (i.e. lower process costs), improved end product quality (i.e. better performance of used chemicals) and/or optimized use of coating colour components (i.e. lower total formulation cost)

  • PDF

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

Photoacoustic Nonlinearity to Absorption Coefficients in Photoacoustic Imaging with Focused Ultrasound Transducers (초점 초음파 측정기로 측정한 광음향 신호의 광 흡수계수에 대한 비선형성)

  • Kang, Dongyel
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.158-165
    • /
    • 2017
  • The physical shape of an ultrasound transducer has not been considered in previous studies of the photoacoustic saturation effect, where a photoacoustic signal's magnitude linearly increases as an absorption coefficient increases and it is finally saturated. In this paper, the effect of a spherically focused ultrasound transducer on photoacoustic nonlinearity is investigated. The focused ultrasound transducer's spatial filtering effect on photoacoustic signals is analytically derived considering the combined concept of a virtual point detector and Green function approach. The ultrasound transducer's temporal response (i.e., transfer function) effect on photoacoustic signals is considered by integrating photoacoustic signal values within the absorption area covered by a spatial resolution of the ultrasound transducer. Results from the analytically derived expression show that the magnitude of photoacoustic signals measured by a spherical focused ultrasound transducer shows a maximum at a specific absorption coefficient, and decreases after that maximum point as an absorption coefficient is increased. The origin of this photoacoustic nonlinearity is physically understood by comparing the ultrasound transducer's transfer functions and photoacoustic resonance spectra. In addition, this physical interpretation implies that the photoacoustic nonlinearity is strongly dependent on the irradiance distribution inside an absorption medium.

Study on Extracting Filming Location Information in Movies Using OCR for Developing Customized Travel Content (맞춤형 여행 콘텐츠 개발을 위한 OCR 기법을 활용한 영화 속 촬영지 정보 추출 방안 제시)

  • Park, Eunbi;Shin, Yubin;Kang, Juyoung
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Purpose The atmosphere of respect for individual tastes that have spread throughout society has changed the consumption trend. As a result, the travel industry is also seeing customized travel as a new trend that reflects consumers' personal tastes. In particular, there is a growing interest in 'film-induced tourism', one of the areas of travel industry. We hope to satisfy the individual's motivation for traveling while watching movies with customized travel proposals, which we expect to be a catalyst for the continued development of the 'film-induced tourism industry'. Design/methodology/approach In this study, we implemented a methodology through 'OCR' of extracting and suggesting film location information that viewers want to visit. First, we extract a scene from a movie selected by a user by using 'OpenCV', a real-time image processing library. In addition, we detected the location of characters in the scene image by using 'EAST model', a deep learning-based text area detection model. The detected images are preprocessed by using 'OpenCV built-in function' to increase recognition accuracy. Finally, after converting characters in images into recognizable text using 'Tesseract', an optical character recognition engine, the 'Google Map API' returns actual location information. Significance This research is significant in that it provides personalized tourism content using fourth industrial technology, in addition to existing film tourism. This could be used in the development of film-induced tourism packages with travel agencies in the future. It also implies the possibility of being used for inflow from abroad as well as to abroad.