• Title/Summary/Keyword: Optical Waveguide

Search Result 747, Processing Time 0.024 seconds

Rectangular ring laser based on total internal reflection mirror and directional coupler (전반사 미러와 방향성 결합기를 이용한 직사각형 링 레이저)

  • Kim, Doo-Gun;Choi, Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.17-23
    • /
    • 2008
  • We have investigated the properties of the novel rectangular ring lasers containing active and passive regions in a InP material system. The rectangular ring laser consists of four low loss total internal reflection mirrors and a directional coupler made out of passive three waveguide. Two different lasers haying active lengths of 250 and $350{\mu}m$ and total cavity lengths of 580 and $780{\mu}m$ are fabricated, respectively. For both devices lasing thresholds of 38 mA is obtained at room temperature and under continuous wave operation. Lasing is predominantly single mode with the side mode suppression ratio better than 20 dB.

Low Index Contrast Planar SiON Waveguides Deposited by PECVD (PECVD 법에 의해 제작된 저굴절률 차이 평판 SiON광도파로)

  • Kim, Yong-Tak;Yoon, Seok-Gyu;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.178-181
    • /
    • 2005
  • Silicon oxynitride (SiON) layers deposited upon a $SiO_2/Si$ buffer layer placed upon silicon wafers have been obtained by using PECVD from $SiH_4,\;N_2O$, and $N_2$. It can be seen that the refractive index, measured by using a prism coupler, for the SiON films can be varied between 1.4480 and 1.4958 at a wavelength of 1552 nm by changing the process parameters. Optical planar waveguides with a thickness of $6{\mu}m$ and a refractive index contrast ($\Delta$n) of $0.36\% have been deposited. Also, etching experiments were performed using ICP dry etching equipment on thick SiON films grown onto Si substrates covered by a thick $SiO_2$ buffer layer. A polarization maintaining single-mode fiber was used for the input and a microscope objective for the output at $1.55{\mu}m$. As a result, a low index contrast SiON based waveguide is fabricated with easily adjustable refractive index of core layer. It illustrates that the output intensity mode is a waveguiding single-mode.

The Operating Characteristics of DBR-LD with Wavegudies Coupling Structure (도파로 결합 구조에 따른 DBR-LD의 동작특성)

  • 오수환;박문호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.666-672
    • /
    • 2003
  • In this paper, we described the fabrication and the performance of wavelength tunable distributed bragg reflector (DBR) laser diode (LD), having different waveguide coupling mechanisms; integrated-twin-guide (ITG) DBR-LD and butt coupled (BT) DBR-LD. This deviceis fabricated by metal organic vapor phase epitaxy (MOVPE) growth and planar buried heterostructure (PBH)-type transverse current confinement structure. The result of measurement, the optical performance of BT-DBR-LD is better over 2 times than that of ITG-DBR-LD at the variation of threshold current and output power, and slop efficiency due to the higher coupling efficiency of the butt coupled structure than the integrated twin guide structure. The maximum wavelength tuning range is about 7.2nm for ITG DBR-LD and 7.4nm for BT DBR-LD. Both types of lasers have a very high yield of single mode operation with a side-mode suppression ratio of more than 35dB.

Fabrication of gratings in Planar Lightwave Circuits for External Cavity Laser (외부 공진기 레이저 구현을 위한 평면도파로 격자 제작)

  • Lim, Jong-Hoon;Lim, Gun;Lee, Kyung-Shik;Song, Jeong-Hwan;Cho, Jae-Geol;Jung, Sun-Tae;Oh, Yun-Kyung
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.490-494
    • /
    • 2004
  • Bragg gratings were fabricated in Ge-doped silica planar lightwave circuits (PLC) for different writing conditions to study the growth characteristics. The refractive index modulation of the gratings grew in the PLC with total fluence F according to the power law $\Delta$n=A $F^{B}$. The characteristics of the PLC gratings formed for external cavity lasers match closely to those predicted by the power law. The oscillation spectra of the FP-LD with a Bragg grating grown in the PLC waveguide were also presented.d.

Growth and characterization of periodically polarity-inverted ZnO structures grown on Cr-compound buffer layers

  • Park, J.S.;Goto, T.;Hong, S.K.;Chang, J.H.;Yoon, E.;Yao, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.259-259
    • /
    • 2010
  • Periodically polarity inverted (PPI) ZnO structures on (0001) Al2O3 substrates are demonstrated by plasmas assisted molecular beam epitaxy. The patterning and re-growth methods are used to realize the PPI ZnO by employing the polarity controlling method. For the in-situ polarity controlling of ZnO films, Cr-compound buffer layers are used.[1, 2] The region with the CrN intermediate layer and the region with the Cr2O3 and Al2O3 substrate were used to grow the Zn- and O-polar ZnO films, respectively. The growth behaviors with anisotropic properties of PPI ZnO heterostructures are investigated. The periodical polarity inversion is evaluated by contrast images of piezo-response microscopy. Structural and optical interface properties of PPI ZnO are investigated by the transmission electron microcopy (TEM) and micro photoluminescence ($\mu$-PL). The inversion domain boundaries (IDBs) between the Zn and the O-polar ZnO regions were clearly observed by TEM. Moreover, the investigation of spatially resolved local photoluminescence characteristics of PPI ZnO revealed stronger excitonic emission at the interfacial region with the IDBs compared to the Zn-polar or the O-polar ZnO region. The possible mechanisms will be discussed with the consideration of the atomic configuration, carrier life time, and geometrical effects. The successful realization of PPI structures with nanometer scale period indicates the possibility for the application to the photonic band-gap structures or waveguide fabrication. The details of application and results will be discussed.

  • PDF

Low Power NDIR CO2 Sensor Using LED Light Source with a Smart Device Interface (스마트 기기와 결합 가능한 LED 광원을 사용하는 저전력용 비분산 적외선 CO2센서)

  • Kim, Jong-heon;Lee, Chan-joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1606-1612
    • /
    • 2015
  • In this paper, a portable high efficiency nondispersive infrared(NDIR) $CO_2$ sensor module with a smart device interface is developed. For low power consumption design, an IR LED was used instead of tungsten lamp for light source and an optical waveguide optimized to the sensor module is designed. With the smart device interface, power of the sensor module is applied from the battery of smart phone. The measured data of the sensor module such as $CO_2$ concentration, temperature, and humidity are displayed on the smart phone using android application. From measured results, the developed sensor module shows ${\pm}60ppm$ tolerance error from 0 to 3,000ppm $CO_2$ concentration range among $-10^{\circ}C$ and $50^{\circ}C$ ranges.

Temperature Compensation and Characteristics of Non-dispersive Infrared Alcohol Sensor According to the Intensity of Light (입사광량의 조절과 이에 따른 비분산 적외선 알코올 센서의 온도 특성과 보정)

  • Kim, JinHo;Cho, HeeChan;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2018
  • In this paper, we describe the thermal characteristics of the output voltages of ethanol gas sensor according to the amount of radiation incident on the infrared sensors located at each focal point of two elliptical waveguides. In order to verify the output characteristics of the gas sensor according to the amount of incident light on the infrared sensor, two combinations of sensor modules were fabricated. Hydrophobic thin film is deposited on one of the reflectors of sensor modules and one of the two infrared sensors was equipped with a hollow disk (10 Ø), and the temperature characteristics of the infrared sensor equipped with the hollow disk (10 Ø) and the infrared sensor without the disk were tested. The temperature was varied from 253 K to 333 K at 10 K intervals based on 298 K. The properties of ethanol gas sensor have been identified with respect to varying temperature for a range of ethanol concentration from 0 ppm to 500 ppm. In the case of an infrared sensor equipped with a hollow disk (10 Ø), the output voltage of the sensor decreased by 0.8 mV and 1 mV, respectively, as the temperature increased. Conversely, the output voltage of the diskless infrared sensor showed an average increase of 67 mV and 57 mV as the temperature increased. The ethanol concentrations estimated on the basis of results show an error of more than 10 % for less than 100 ppm concentration. However, if the ethanol concentration exceeds 100 ppm, the gas concentration can be estimated within the range of ${\pm}10%$.

Outcoupling Enhancement of OLED using Microlens Array and Diffractive Grating (마이크로 렌즈 어레이와 회절격자 레지스트 패턴을 이용한 유기광원(OLED)의 광 추출 효율 향상)

  • Jang, Ji-Hyang;Kim, Kyung-Jo;Kim, Jin-Hun;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.441-446
    • /
    • 2007
  • Outcoupling efficiency of the OLED device is improved by incorporating both a microlens array and a diffractive grating pattern. The microlens array improves the light transmission at the interface of glass and air, and the diffractive grating outcouples the guided mode propagating at the waveguide, which consists of ITO and organic layers. By using the PDMS soft mold imprinting method, the microlens array is fabricated on the glass substrate. The diffractive grating pattern is directly fabricated on the ITO surface by using laser interferometry. A microlens array with a diameter of $10{\mu}m$ improves the light coupling efficiency by 22%. The diffractive grating made of TSMR photoresist enhances the luminance power efficiency by 41% at a current density of $20mA/cm^2$.

Hybrid-Integrated Tunable Laser Based on Small Double-Ring Resonator with Improved Side Mode Suppression Ratio (부 모드 억제율이 향상된 소형 이중 링 공진 반사기 기반 하이브리드 집적 파장 가변 레이저)

  • Kwon, Oh-Sang;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.102-107
    • /
    • 2011
  • In this paper, a small double ring resonator reflector was designed and fabricated using a polymer waveguide, and the measurement result was discussed. A widely tunable characteristic of the small double ring resonator caused by the Vernier effect, which results from the difference of the ring radii, was observed. The insertion loss of the double ring reflector was reduced by minimizing the device length to be as short as possible, and thus the output power and the SMSR (side mode suppression ratio) was greatly enhanced. The hybrid integrated laser based on the small double ring resonator reflector lased with the SMSR of 45 dB. In addition, the wide tuning range of 40 nm could be obtained by injecting a current of 30 mA to an electrode on top of the reflector.

Wide Tuning and Modulation Characteristics Analysis of Coupled-Ring Reflector Laser Diode (결합 링 반사기 레이저 다이오드의 광대역 파장 가변 및 변조 특성 해석)

  • Yoon, Pil-Hwan;Kim, Su-Hyun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.544-547
    • /
    • 2006
  • A time-domain modeling approach is used to study characteristics of a widely tunable coupled-ring reflector (CRR) laser diode(LD). The CRR consists of a bus waveguide and two coupled ring resonators coupled to the bus without resorting to distributed Bragg grating structure. The tuning range can be a few tens of nanometers with a side mode suppression ratio exceeding 35dB through the adjustment of currents into the phase control sections in the rings. The CRR laser diode has long effective cavity length compared to conventional laser diodes. Accordingly, a broad additional resonance peak in the amplitude modulation characteristics is observed between 20 to 30 GHz, implying the extension of amplitude modulation bandwidth.