• Title/Summary/Keyword: Optical Transmission Image

Search Result 114, Processing Time 0.032 seconds

Proposal and Verification of Image Sensor Non-uniformity Correction Algorithm (영상센서 픽셀 불균일 보정 알고리즘 개발 및 시험)

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.29-33
    • /
    • 2007
  • All pixels of image sensor do not react uniformly even if the light of same radiance enters into the camera. This non-uniformity comes from the sensor pixel non-uniformity and non-uniformity induced by the changing transmission of the telescope over the field. The first contribution to the non-uniformity has high spatial frequency nature and has an influence on the result and quality of the data compression. The second source of non-uniformity has low frequency nature and has no influence of the compression result. As the contribution resulting from the sensor PRNU(Photo Response Non-Uniformity) is corrected inside the camera electronics, the effect of the remaining non-uniformity to the compression result will be negligible. The non-uniformity correction result shall have big difference according to the sensor modeling and the calculation method to get correction coefficient. Usually, the sensor can be modeled with one dimensional coefficients which are a gain and a offset for each pixel. Only two measurements are necessary theoretically to get coefficients. However, these are not the optimized value over the whole illumination level. This paper proposes the algorithm to calculate the optimized non-uniformity correction coefficients over whole illumination radiance. The proposed algorithm uses several measurements and the least square method to get the optimum coefficients. The proposed algorithm is verified using the own camera electronics including sensor, electrical test equipment and optical test equipment such as the integrating sphere.

A study on the characteristics of double insulating layer (HgCdTe MIS의 이중 절연막 특성에 관한 연구)

  • 정진원
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.463-469
    • /
    • 1996
  • The double insulating layer consisting of anodic oxide and ZnS was formed for HgCdTe metal insulator semiconductor(MIS) structure. ZnS was evaporated on the anodic oxide grown in H$_{2}$O$_{2}$ electrolyte. Recently, this insulating mechanism for HgCdTe MIS has been deeply studied for improving HgCdTe surface passivation. It was found through TEM observation that an interface layer is formed between ZnS and anodic oxide layers for the first time in the study of this area. EDS analysis of chemical compositions using by electron beam of 20.angs. in diameter and XPS depth composition profile indicated strongly that the new interface is composed of ZnO. Also TEM high resolution image showed that the structure of oxide layer has been changed from the amorphous state to the microsrystalline structure of 100.angs. in diameter after the evaporation of ZnS. The double insulating layer with the resistivity of 10$^{10}$ .ohm.cm was estimated to be proper insulating layer of HgCdTe MIS device. The optical reflectance of about 7% in the region of 5.mu.m showed anti-reflection effect of the insulating layer. The measured C-V curve showed the large shoft of flat band voltage due to the high density of fixed oxide charges about 1.2*10$^{12}$ /cm$^{2}$. The oxygen vacancies and possible cationic state of Zn in the anodic oxide layer are estimated to cause this high density of fixed oxide charges.

  • PDF

Study on Sonochemical Synthesis and Characterization of CdTe Quatum Dot (초음파 방법을 이용한 CdTe 양자점의 합성 및 특성에 관한 연구)

  • Yoo, Jeong-yeol;Kim, Woo-seok;Park, Seon-A;Kim, Jong-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.571-575
    • /
    • 2017
  • In this study, cadmium telluride (CdTe) quantum dots were synthesized by using ultrasonic irradiation method. Optical properties and structural characteristics of the CdTe quantum dots were analyzed by two main variables; the ratio of the precursor and the synthesis time. As the synthesis time increased, the band gap reduction was observed with the growth of CdTe quantum dots. As for the luminescence properties, the red shift appeared at 510~610 nm wavelength range. Also, it was confirmed that the red shift occurs rapidly as the ratio of Te increases. According to PL peak intensity, the highest intensity was shown at 180 to 240 min. Structural characteristics of CdTe quantum dots were investigated through XRD and TEM, and the cubic zinc blend structure was observed. The size of quantum dots was about 2.5 nm and uniformly dispersed when the synthesis time took 210 min. In addition, the apparent crystallinity was discovered in FFT image.

Colloidal synthesis of IR-Iuminescent HgTe quantum dots (콜로이드 합성법에 의한 HgTe 양자점의 제조와 특성 분석)

  • Song, Hyun-Woo;Cho, Kyoung-Ah;Kim, Hyun-Suk;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.31-34
    • /
    • 2002
  • HgTe quantum dots were synthesized in aqueous solution at room temperature by colloidal method. The synthesized materials were identified to be zincblende cubic structured HgTe quantum dots by X-ray diffraction and transmission electron microscopy image revealed that these quantum dots are agglomerate of a individual particle. The colloidally prepared HgTe quantum dots have the sphere-like shape with a diameter of approximately 4 nm. The optical properties of the HgTe quantum dots were investigated with photoluminescence(PL). The PL appears in the near-infrared region, which represent a dramatic shift from bulk HgTe behavior. The analytic results revealed that HgTe quantum dots have the broad size distribution, as PL emission spectrum covers the spectral region from 900 to 1400 nm. In this study, the factors affecting PL of HgTe quantum dots and particle size distributiont are described.會Ā᐀䁇?⨀젲岒Ā㰀會Ā㰀顇?⨀끩Ā㈀會Ā㈀?⨀䡪ఀĀ᐀會Ā᐀䡈?⨀Ā᐀會Ā᐀ꁈ?⨀硫ᜀĀ저會Ā저?⨀샟ගऀĀ저會Ā저偉?⨀栰岒ఀĀ저會Ā저ꡉ?⨀1岒Ā저會Ā저J?⨀惝ග؀Ā؀會Ā؀塊?⨀ග嘀Ā切會Ā切끊?⨀⣟ගĀ搀會Ā搀ࡋ?⨀큭킢Ā저會Ā저恋?⨀桮킢Ā저會Ā저롋?⨀⣅沥ࠀĀࠀ會Āࠀ၌?⨀샅沥Ā저會Ā저桌?⨀壆沥ሀĀ저會Ā저쁌?⨀o킢瀀ꀏ會Āᡍ?⨀棤좗ĀĀĀ會ĀĀ灍?⨀å좗ĀĀĀ會ĀĀ졍?⨀飥좗ĀĀĀ會ĀĀ⁎?⨀?ꆟᤀ

  • PDF

Optical and microstructural behaviors in the GaN-based LEDs structures with the p-GaN layers grown at different growth temperatures (GaN 기반 LED구조의 p-GaN층 성장온도에 따른 광학적, 결정학적 특성 평가)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Kim, Young-Yi;Han, Won-Suk;Ahn, Cheol-Hyoun;Choi, Mi-Kyung;Cho, Hyung-Koun;Lee, Ju-Young;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.144-144
    • /
    • 2008
  • Blue light emitting diode structures consisting of the InGaN/GaN multiple quantum wells were grown by metalorganic chemical vapor deposition at different growth temperatures for the p-GaN contact layers and the influence of growth temperature on the emission and microstructural properties was investigated. The I-V and electroluminescence measurements showed that the sample with a p-GaN layer grown at $1084^{\circ}C$ had a lower electrical turn-on voltage and series resistance, andenhanced output power despite the low photoluminescence intensity. Transmission electron microscopy (TEM) revealed that the intense electro luminescence was due to the formation of a p-GaN layer with an even distribution of Mg dopants, which was confirmed by TEM image contrast and strain evaluations. These results suggest that the growth temperature should be optimized carefully to ensurethe homogeneous distribution of Mg as well as the total Mg contents in the growth of the p-type layer.

  • PDF

Technical Characteristics and Trends of Capsule Endoscope (캡슐 내시경의 기술적 특징과 동향)

  • Kim, Ki-Yun;Won, Kyung-Hoon;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.329-337
    • /
    • 2012
  • Capsule Endoscope(CE) is a capsule-shaped electronic device which can examine the lesions in digestive tract of human body. Recently the medical procedure using capsule endoscope is receiving great attention to both doctors and patients, since the conventional push-typed endoscope using cables brings great pain and fear to the patients. The technique was firstly available in 2000 and is based on a convergence techniques among BT(Bio Technology), IT(Information Technology), and NT(Nano Technology). The device consists of an optical parts including LEDs(Light Emitting Diodes), an image sensor, a communication module and a power module. Capsule endoscope is the embodiment of the state-of-the art technology and requires key technologies in the various engineering fields. Therefore, in this paper, we introduce the composition of the capsule endoscope system, and compare the communication method between RF(Radio Frequency) communication and HBC(Human Body Communication), which are typically used for data transmission in the capsule endoscope. Furthermore, we analyze the specification of commercialized capsule endoscopes and present the future developments and technical challenges.

Comparison of Dustiness of Eleven Nanomaterials using Voltex Shaker Method (볼텍스쉐이커를 이용한 11개 나노물질의 분진날림 비교)

  • Lee, Naroo;Park, Jinwoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.273-282
    • /
    • 2018
  • Objectives: Dustiness of nanomaterials is considered as exposure index of essential material. Research on dustiness of nanomaterial is needed to control exposure in workplaces. Method: Dustiness measurement using vortex shaker were installed in the laboratory. Nanomaterials, 1 g, was put in the glass test tube and shaked using vortex shaker. Aerosol dispersed was measured using scanning mobility particle sizer(SMPS) and optical particle counter(OPC). Mass concentration using PVC filter and cassette was measured and TEM grid sampling was conducted. Total particle concentration and size distribution were calculated. Image and chemical composition of particles in the air were observed using transmission electron microscopy and energy dispersive X-ray spectrometer. Eleven different test nanomaterials were used in the study. Results: Rank of mass concentration and particle number concentration were coincided in most cases. Rank of nanomateirals with low concentration were not coincided. Two types of fumed silica had the highest mass concentration and particle number concentration. Indium tin oxide, a mixture of indium oxide and tin oxide, had high mass concentration and particle number concentration. Indium oxide had very low mass concentration and particle number concentration. Agglomeration of nanoparticles in the air were observed in TEM analysis and size distribution. In this study, mass concentration and particle number concentration were coincided and two index can be used together. The range of dustiness in particle number concentration were too wide to measure in one method. Conclusion: Particle number concentration ranged from low concentration to high concentration depend on type of nanomaterial, and varied by preparation and amount of nanomaterial used. Further study is needed to measure dustiness of all nanomaterial as one reference method.

Analysis of the Influence of Atmospheric Turbulence on the Ground Calibration of a Star Sensor

  • Xian Ren;Lingyun Wang;Guangxi Li;Bo Cui
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.38-44
    • /
    • 2024
  • Under the influence of atmospheric turbulence, a star's point image will shake back and forth erratically, and after exposure the originally small star point will spread into a huge spot, which will affect the ground calibration of the star sensor. To analyze the impact of atmospheric turbulence on the positioning accuracy of the star's center of mass, this paper simulates the atmospheric turbulence phase screen using a method based on a sparse spectrum. It is added to the static-star-simulation device to study the transmission characteristics of atmospheric turbulence in star-point simulation, and to analyze the changes in star points under different atmospheric refractive-index structural constants. The simulation results show that the structure function of the atmospheric turbulence phase screen simulated by the sparse spectral method has an average error of 6.8% compared to the theoretical value, while the classical Fourier-transform method can have an error of up to 23% at low frequencies. By including a simulation in which the phase screen would cause errors in the center-of-mass position of the star point, 100 consecutive images are selected and the average drift variance is obtained for each turbulence scenario; The stronger the turbulence, the larger the drift variance. This study can provide a basis for subsequent improvement of the ground-calibration accuracy of a star sensitizer, and for analyzing and evaluating the effect of atmospheric turbulence on the beam.

Optically transparent ultrasound transducers for combined ultrasound and photoacoustic imaging: A review (초음파-광음향 융합 영상을 위한 투명 초음파 변환기)

  • Shunghun Park;Jin Ho Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.441-451
    • /
    • 2023
  • Ultrasound transducers are an essential component of combined photoacoustic and ultrasound imaging systems and play an important role in image evaluation. However, ultrasound transducers are opaque; therefore, light must bypass the ultrasound transducer to reach the target point to produce a photoacoustic image. Providing different paths for the optical and acoustic signals results in a complicated system design, increasing the system volume. To overcome these problems, an optically Transparent Ultrasound Transducer (TUT) was developed. Unlike conventional opaque ultrasound transducers, optically TUT can be fabricated by a variety of manufacturing methods and they are suitable for use with specific piezoelectric elements and serve various purposes. In this study, a comparative analysis of the results of using Lithium Niobate (LNO), Lead Magnesium Niobate-Lead Titanate (PMN-PT), and Polyvinylidene Difluoride (PVDF), which are materials used in piezoelectric element-based TUT. LNO is a piezoelectric element widely used in TUT, and PMN-PT has been actively studied recently with a higher transmission and reception rate than LNO. Existing TUT have lower ultrasound resolution than photoacoustic resolution, but they have recently been manufacturing focused TUT with high ultrasound resolution using PVDF. A comparative analysis of the production results of these TUT was performed.

Study of Animation 3-Dimensional Motion Picture (애니메이션 입체 영화에 대한 연구)

  • Min, Kyung-Mi
    • Cartoon and Animation Studies
    • /
    • s.9
    • /
    • pp.127-142
    • /
    • 2005
  • Not only in Korea but throughout the entire world millions of people are in contact with images. Images have become a medium through which to transmit anything from simple visualizations of moving images to knowledge and information. The age of the internet has arisen thanks to scientific development, and the internet generation's acquisition of information is continuously becoming faster. The spectators, ufo must choose amongst the excessive amount of available information, are changing along with it just as quickly. The method of visual transmission has changed to match the demands of the fast-changing pace of the new generation. In order to receive an instantaneous selection amongst much information, the primary requisite is attracting one's attention, and then presenting a corresponding feeling of satisfaction. The early stages of film arose from the desire to capture one's actual situation as it realty is. Unsatisfied with the still picture, people developed the motion picture. Research has succeeded in reproducing 3-dimensional images more realistic than the actual image we perceive as a result of the difference in visual perspective of both eyes and their response to rays of light From color film to 3-dimensional pictures, people enjoy the magnificent results of this. All fields within the category of film are continuously studying the human desire to pursue their visual side, namely the pursuit of visual images with a maximum sense of reality. The images that millions of people around the world see now are flat. The screen's depth and optical illusions effectively give a sense of reality while conveying information. However, although the flat screen is able to create a sense of depth using the different visual perspective of each eye for the realization of a cubic effect, there are limitations. Entering the 21s1 century, there is a quickly-arising branch within the field of image media which seeks to overcome these limitations Although 3-dimensional images began in films, entering the latter half of the 20th century, due to development of 3-dimensional images using the mediums of the animation field, cellular phones, advertisement screens, television etc., without restriction is designated as 'image.'. With research having started around 1900 and continuing for over 100 years, we are now able to witness the popularization of 3-dimensional films happening before our very eyes. Within our own country, we can frequently see them at amusement parks and museums. In the future, through the popularization of HDTV etc., there is a good outlook for practical use of 3-dimensional images in televisions with advanced picture qualify as well as in other areas. Together with the international current, research on 3-dimensional films has been activated in Korea and is rising as a main current in the film industry. Within this context, the contents and understanding of 3-dimensional images must keep in step with the pace of technical advancements. In order to accelerate of development of film contents to keep in pace with technical developments, this dissertation presents the techniques and technical aspects of future developments, and shows the need to prepare in advance to make the field grow- and thereby avoid having a lack of experts and being conquered by other nations in the field - rather than only advancing the technical aspects and importing the contents. This dissertation aims to stimulate interest and continual research by progressive-thinking people related to the film industry. Part II looks into the definition and types of 3-dimensional motion pictures, the terminology, the fundamentals of image formation, current market fluctuations, and looks into 3-dimensional techniques which can be borrowed and introduced in 3-dimensional animations. Part III concerns 3-dimensional animated films. It analyzes 3-dimensional production techniques while using the introduction of specific animation techniques in the 2004 production Lee Sun Shin and Nelson - Naval Heroes 3-dimensional animation produced in 2004 by Clay & Puppet Stop-Motion Animation & Computer Graphic. Original Korean title: 해전영웅 이순신과 넬슨. as an example, and it also looks into how current film techniques used in animations can be applied in 3-dimensional films. Additionally, the actual stages of the various fields of 3-dimensional animations are presented. Given the current direction and advancement of 3-dimensional films making use of animations and the possible realization of this field, the author plans to weigh the development of this yet unexploited new market Not looking at the current progress of the field, but rather the direction of the hypothetical types of animation techniques, the author predicts the marketability and possibility of development of each area.

  • PDF