Browse > Article
http://dx.doi.org/10.14478/ace.2017.1078

Study on Sonochemical Synthesis and Characterization of CdTe Quatum Dot  

Yoo, Jeong-yeol (Department of Chemistry, Dankook University)
Kim, Woo-seok (Department of Chemistry, Dankook University)
Park, Seon-A (Department of Chemistry, Dankook University)
Kim, Jong-Gyu (Department of Chemistry, Dankook University)
Publication Information
Applied Chemistry for Engineering / v.28, no.5, 2017 , pp. 571-575 More about this Journal
Abstract
In this study, cadmium telluride (CdTe) quantum dots were synthesized by using ultrasonic irradiation method. Optical properties and structural characteristics of the CdTe quantum dots were analyzed by two main variables; the ratio of the precursor and the synthesis time. As the synthesis time increased, the band gap reduction was observed with the growth of CdTe quantum dots. As for the luminescence properties, the red shift appeared at 510~610 nm wavelength range. Also, it was confirmed that the red shift occurs rapidly as the ratio of Te increases. According to PL peak intensity, the highest intensity was shown at 180 to 240 min. Structural characteristics of CdTe quantum dots were investigated through XRD and TEM, and the cubic zinc blend structure was observed. The size of quantum dots was about 2.5 nm and uniformly dispersed when the synthesis time took 210 min. In addition, the apparent crystallinity was discovered in FFT image.
Keywords
cadmium telluride; quantum dot; ultrasonic; sonochemical; red shift;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Zhou, M. Lin, Z. Chen, H. Sun, H. Zhang, H. Sun, and B. Yang, Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface funtionality, Chem. Mater., 23, 4857-4862 (2011).   DOI
2 F. D. Menezes, A. Galembeck, and S. Alves Jr., New methodology for obtaining CdTe quantum dots by using ultrasound, Ultrason. Sonochem., 18, 1008-1011 (2011).   DOI
3 D. L. Klayman and T. S. Griffin, Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules, J. Am. Chem. Soc., 95, 197-199 (1973).   DOI
4 A. Gedanken, Using sonochemistry for the fabrication of nanomaterials, Ultrason. Sonochem., 11, 47-55 (2004).   DOI
5 V. Saez and T. J. Mason, Sonoelectrochemical synthesis of nanoparticles, Molecules, 14, 4284-4299 (2009).   DOI
6 X. F. Qiu, C. Burda, R. L. Fu, L. Pu, H. T. Chen, and J. J. Zhu, Heterostructured Bi2Se3 nanowires with periodic phase boundaries, J. Am. Chem. Soc., 126, 16276-16277 (2004).   DOI
7 C. Mahendiran, R. Ganesan, and A. Gedanken, Sonoelectrochemical synthesis of metallic alumium nanoparticles, Eur. J. Inorg. Chem., 14, 2050-2053 (2009).
8 J. J. Shi, G. H. Yang, and J. J. Zhu, Sonoelectrochemical fabrication of PDDA-RGO-PdPt nanocomposites as electrocalyst for DAFCs, J. Mater. Chem., 21, 7343-7349 (2011).   DOI
9 M. Dabala, B. G. Pollet, V. Zin, E. Campadello, and T. J. Mason, Sonoelectrochemical (20 kHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions, J. Appl. Electrochem., 38, 395-402 (2008).   DOI
10 A. L. Stroyuk, A. I. Kryukov, S. Ya. Kuchmii, and V. D. Pokhodenko, Quantum size effect in the photonics of semiconductor nanoparticles, Theor. Exp. Chem., 41, 67-91 (2005).   DOI
11 B. Dubertert, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 298, 1759-1762 (2002).   DOI
12 N. S. A Eom, T. S. Kim, Y. H. Choa, and S. B. Kim, Synthesis and characterzation of CdSe quantum dot with injection temperature and reaction time, J. Mater. Res., 22, 140-144 (2012).
13 L. E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys., 80, 4403-4409 (1984).   DOI
14 D. P. Thomas, B. M. Walsh, and M. C. Gupta, CdSe(ZnS) nanocomposite luminescent high temperature sensor, Nanotechnology, 22, 185503-185510 (2011).   DOI
15 Y. Q. Li, A. Rizzo, R. Cingolani, and G. Gigli, Bright white-light-emitting device from ternary nanocrystal composites, Adv. Mater., 18, 2545-2548 (2006).   DOI
16 S. K. Poznyak, D. V. Talapin, E. V. Shevchenko, and H. Weller, Quantum dot chemiluminescence, Nano Lett., 4, 693-698 (2004).   DOI
17 L. O. Narhi, J. Schmit, K. Bechtold-Peter, and D. Sharma, Classification of protein aggregates, J. Pharm. Sci., 2, 493-498 (2012).
18 S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, 420, 800-803 (2002).   DOI
19 W. U. Huynh, X. G. Peng, and A. P. Alivisatos, CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices, Adv. Mater., 11, 923-927 (1999).   DOI
20 C. B. murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 115, 8906-8715 (1993).
21 N. E. Christensen, I. Groczyca, O. B. Christensen, U. Schmid, and M. Cardona, Band structure and heterojunctions of II-VI materials, J. Cryst. Growth, 101, 318-331 (1990).   DOI
22 M. M. Moghaddam, M. Baghbanzadeh, A. Sadeghpour, O. Glatter, and C. O. Kappe, Continuous-flow synthesis of CdSe quantum dots: A size-tunable and scalable approach, J. Eur. Chem., 19, 11629-11636 (2013).   DOI
23 P. V. Kamat, Quantum dot solar cells: Semiconductor nanocrystals as light harvesters, Science, 271, 933-937 (1996).   DOI
24 B. J. Kumar, D. S. Kumar, and H. M. Mahesh, A facile single injection hydrothermal method for the synthesis of thiol capped CdTe quatum dots as light harvesters, J. Lumin., 178, 362-367 (2016).   DOI
25 Y. F. Liu and J. S. Yu, Selective synthesis of CdTe and high luminescence CdTe/CdS quatum dots: the effect of lighands, J. Colloid Interface Sci., 333, 690-698 (2009).   DOI
26 F. O. Silva, M. S. Carvalho, R. Mendonca, W. A. Macedo, K. Balzuweit, and P. Reiss, Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots, Nanoscale Res. Lett., 7, 536-546 (2012).   DOI
27 A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, 271, 933-937 (1996).   DOI
28 X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivistos, Shape control of CdSe nanocrystals, Nature, 404, 59-61 (2002).
29 N. L. Pickett, S. Lawson, W. G. Thomas, F. G. Riddell, D. F. Foster, D. J. Cole-Hamilton, and J. R. Fryer, Gas phase formation of zinc/cadmium chalcogenide cluster complexes and their solid-state thermal decomposition to form II-VI nanoparticulate material, J. Mater. Chem., 8, 2769-2776 (1998).   DOI
30 T. Rajh, O. I. Mieie, and A. J. Nozik, Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots, J. Phys. Chem., 79, 11999-12003 (1993).
31 J. Hambrock, A. Birkner, and R. A. Fischer, Synthesis of CdSe nanoparticles using various organometallic cadmium precursors, J. Mater. Chem., 11, 3197-3201 (2001).   DOI
32 H. S. Chen, B. Lo, J. Y. Hwang, G. Y. Chang, C. M. Chen, S. J. Tasi, and S. J. Wang, Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO, J. Phys. Chem. B, 108, 17119-17123 (2004).   DOI
33 C. Ge, M. Xu, J. Liu, J. Lei, and H. Ju, Facile synthesis and application of highly luminescent CdTe quantum dots with an electrogenerated precursor, Chem. Commun., 4, 450-452 (2008).
34 R. T. R. Ribeiro, J. J. M. M. Dias, G. a G. Pereira, D. V. Freitas, P. E. Cabral Filho, R. A. Raele, A. Fontes, M. Navarro, and B. S. Santos, Electrochemical synthetic route for preparation of CdTe quantum-dots stabilized by positively or negatively charged lighands, Green Chem., 15, 1061-1066 (2013).   DOI