• Title/Summary/Keyword: Optical Surveillance System

Search Result 60, Processing Time 0.021 seconds

Real Time Object Tracking Method using Multiple Cameras (다중 카메라를 이용한 실시간 객체 추적 방법)

  • Jang, In-Tae;Kim, Dong-Woo;Song, Young-Jun;Kwon, Hyeok-Bong;Ahn, Jae-Hyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.51-59
    • /
    • 2012
  • Recently, the study about object tracking using image processing has been active in the field of security and surveillance. Existing security and surveillance systems using multiple cameras have been operating independently. Thus, the chase was difficult when the tracking object move to other monitored areas. In this paper, we propose the way to change the control of camera automatically following the moving direction of objects in multiple cameras. The proposed method detects the object and tracks the object using color information and direction information of object. The color information obtains using the hue and the direction information obtains using the optical flow. At this time, the optical flow is detected for the entire image area of an object that is not applied only to reduce the computational complexity makes it possible to track in real time. In addition, it can be solved to inconvenience of security surveillance system to use existing camera by tracking an object automatically.

Tiny Drone Tracking with a Moving Camera (동적 카메라 환경에서의 소형 드론 추적 방법)

  • Son, Sohee;Jeon, Jinwoo;Lee, Injae;Cha, Jihun;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.802-812
    • /
    • 2019
  • With the rapid development in the field of unmanned aerial vehicles(UAVs) and drones, higher request to development of a surveillance system for a drone is putting forward. Since surveillance systems with fixed cameras have a limited range, a development of surveillance systems with a moving camera applicable to PTZ(Pan-Tilt-Zoom) cameras is required. Selecting the features for object plays a critical role in tracking, and the object has to be represented by their shapes or appearances. Considering these conditions, in this paper, an object tracking method with optical flow is introduced to track a tiny drone with a moving camera. In addition, a tracking method combined with kalman filter is proposed to track continuously even when tracking is failed. Experiments are tested on sequences which have a target from the minimal 12 pixels to the maximal 56337 pixels, the proposed method achieves average precision of 175% improvement. Also, experimental results show the proposed method tracks a target which has a size of 12pixels.

Optical Flow Based Collision Avoidance of Multi-Rotor UAVs in Urban Environments

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.252-259
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

An User-Friendly Method of Image Warping for Traffic Monitoring System (실시간 교통상황 모니터링 시스템을 위한 유저 친화적인 영상 변형 방법)

  • Yi, Chuho;Cho, Jungwon
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.231-236
    • /
    • 2016
  • Currently, a traffic monitoring service using a surveillance camera is provided through internet. In general, if the user points a certain location on a map, then this service shows the real-time image of the camera where it is mounted. In this paper, we proposed the intuitive surveillance monitoring system which displays a real-time camera image on the map by warping with bird's-eye view and with the top of image as the north. In order to robustly estimate the road plane using camera image, we used the motion vectors which can be detected to changes in brightness. We applied a re-adjustment process to have the same directivity with a map and presented a user-friendly interface that can be displayed on the map. In the experiment, the proposed method was presented as the result of warping image that the user can easily perceive like a map.

Through-field Investigation of Stray Light for the Fore-optics of an Airborne Hyperspectral Imager

  • Cha, Jae Deok;Lee, Jun Ho;Kim, Seo Hyun;Jung, Do Hwan;Kim, Young Soo;Jeong, Yumee
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.313-322
    • /
    • 2022
  • Remote-sensing optical payloads, especially hyperspectral imagers, have particular issues with stray light because they often encounter high-contrast target/background conditions, such as sun glint. While developing an optical payload, we usually apply several stray-light analysis methods, including forward and backward analyses, separately or in combination, to support lens design and optomechanical design. In addition, we often characterize the stray-light response over a full field to support calibration, or when developing an algorithm to correct stray-light errors. For this purpose, we usually use forward analysis across the entire field, but this requires a tremendous amount of computational time. In this paper, we propose a sequence of forward-backward-forward analyses to more effectively investigate the through-field response of stray light, utilizing the combined advantages of the individual methods. The application is an airborne hyperspectral imager for creating hyperspectral maps from 900 to 1700 nm in a 5-nm-continuous band. With the proposed method, we have investigated the through-field response of stray light to an effective accuracy of 0.1°, while reducing computation time to 1/17th of that for a conventional, forward-only stray-light analysis.

Requirement analysis of a low budget dedicated monitoring telescope to support the Geosynchronous Earth Orbit region optical surveillance (지구 정지궤도 영역 상시관측 지원을 위한 저예산 전용 광학관측 시스템 요구사항 분석)

  • Jo, Jung Hyun;Park, Jang-Hyun;Cho, Sungki;Yim, Hong-Suh;Choi, Jin;Park, Maru
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.128-135
    • /
    • 2015
  • Currently we have an electro-optical space object monitoring system (OWL-Net) developed by the Korea Astronomy and Space Science Institute as the only ground-based on orbit space object tracking capability in Korea. This system can produce the ephemeris of domestic satellites and survey the geosynchronous orbit region. As the number of observation objects increases and the operation condition get worse, a low budget dedicated monitoring telescope capable of full time geosynchronous orbit region survey can support an effect operation of the OWL-Net. In this study, we analyze the requirements of a low-budget dedicated optical monitoring system for geosynchronous orbit region without the degradation of observation quality to increase the risk of corrupted ephemeris.

A Study on the Development of One-way Bypass TAP Device for Strengthening the Security of Flood and Environment Surveillance Network (홍수 및 환경 감시망의 보안성 강화를 위한 단방향 Bypass TAP 장치 개발에 관한 연구)

  • Lee, Jin-Young;Kong, Heon-Tag
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.473-481
    • /
    • 2015
  • The flood and environment surveillance network on riverside is a network requiring a way to efficiently manage the information from all kinds of sensors, along with an optical communication device that can deliver high-quality video information at high speed. Since on-site prompt recovery is very important especially for communication problems that occurred due to cut-off or aged network, various researches have been carried out on this. However, because the security against outside hacking or outside intrusion with illegal purposes is very important for environment surveillance network, such as the national backbone network, an efficient network maintenance and repair should be enabled while satisfying security and reliability at the same time. A characteristic of requirement is that when security is improved, the efficiency of maintenance and repair drops as they are conflicting to each other. Therefore, this research proposed a system in order to satisfy the conflicting requirement and improve security, by developing a one-way Bypass TAP and an android-based smartphone app that can enable efficient network maintenance and repair.

Vehicle Tracking System using HSV Color Space at nighttime (HSV 색 공간을 이용한 야간 차량 검출시스템)

  • Park, Ho-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.270-274
    • /
    • 2015
  • We suggest that HSV Color Space may be used to detect a vehicle detecting system at nighttime. It is essential that a licence plate should be extracted when a vehicle is under surveillance. To do so, a licence plate may be enlarged to certain size after the aimed vehicle is taken picture from a distance by using Pan-Tilt-Zoom Camera. Either Mean-Shift or Optical Flow Algorithm is generally used for the purpose of a vehicle detection and trace, even though those algorithms have tendency to have difficulty in detection and trace a vehicle at night. By utilizing the fact that a headlight or taillight of a vehicle stands out when an input image is converted in to HSV Color Space, we are able to achieve improvement on those algorithms for the vehicle detection and trace. In this paper, we have shown that at night, the suggested method is efficient enough to detect a vehicle 93.9% from the front and 97.7% from the back.

Trends of Initial Orbit Determination Accuracy for Time Interval Change Between Three Pairs of Measurement Datas (Gauss, Laplace 예비궤도 결정법의 시간간격에 대한 정밀도 변화 특성 분석)

  • Hwang, Ok-Jun;Jo, Jung-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.529-546
    • /
    • 2009
  • Gauss and Laplace methods for initial orbit determination (IOD) are classical orbit determination tools and have been used very efficiently in optical satellite surveillance system. Several studies related to these two methods have been released until now. In this study, we found that the trends of IOD accuracy for different time interval between three pairs of measurement datas show unexpected results. Therefore, we checked the possible cause of these differences. In order to check various orbit types, we used most of satellite data which is able to obtain. To check the characteristics of methodology-only, we used simulated observation data. And we used real observation data for specific satellites to check the characteristics appeared when we applyed these methods to optical satellite surveillance system. As a result, we found that trends of IOD accuracy for time interval could be different because of satellite position observed.

Background and Local Histogram-Based Object Tracking Approach (도로 상황인식을 위한 배경 및 로컬히스토그램 기반 객체 추적 기법)

  • Kim, Young Hwan;Park, Soon Young;Oh, Il Whan;Choi, Kyoung Ho
    • Spatial Information Research
    • /
    • v.21 no.3
    • /
    • pp.11-19
    • /
    • 2013
  • Compared with traditional video monitoring systems that provide a video-recording function as a main service, an intelligent video monitoring system is capable of extracting/tracking objects and detecting events such as car accidents, traffic congestion, pedestrian detection, and so on. Thus, the object tracking is an essential function for various intelligent video monitoring and surveillance systems. In this paper, we propose a background and local histogram-based object tracking approach for intelligent video monitoring systems. For robust object tracking in a live situation, the result of optical flow and local histogram verification are combined with the result of background subtraction. In the proposed approach, local histogram verification allows the system to track target objects more reliably when the local histogram of LK position is not similar to the previous histogram. Experimental results are provided to show the proposed tracking algorithm is robust in object occlusion and scale change situation.