• Title/Summary/Keyword: Optical Sensor

Search Result 2,139, Processing Time 0.023 seconds

A Study about the Discrimination of Counterfeit \50,000 won bills Using Optical Fiber Sensor (광섬유 센서를 이용한 50,000원 지폐 위조 판별에 관한 연구)

  • Kang, Dae-Hwa;Hong, Jun-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • The authenticity of bank note is threatened by increasing a counterfeit note with development of the information industry, recently. The importance of counterfeit discrimination is stressed, but there is a limits to popularization. Because usually, the existing counterfeit discriminator uses invisible ray zone like UV, IR, etc. The purpose of this paper is the construction of counterfeit discrimination system for \50,000 won bills. This system is used optical fiber sensor with excellent confidence as well as easy way of using in wave length of a visible ray zone. The light was altered by lightening optical fiber sensor to particular part of bank notes in order displacing response of optical fiber sensor. The experiment was processed with data of 100 bank notes on manufacture optical fiber, probe, jig. As a result, the discrimination conuterfeit was verified when the experiment was processing with hologram or CSI on the bank notes with three kinds of color printer.

Optical sensing techniques for simultaneous detection of nanoparticles and microorganisms in water (수질내 초미립자와 미생물의 동시 검출을 위한 광학센서기술)

  • Sohn, Ok-Jae;Hyung, Gi-Woo;Kim, Byung-Seb;Rhee, Jong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.157-161
    • /
    • 2008
  • An optical sensor was developed to detect nanoparticles, turbid materials and microorganisms in water simultaneously. Three different light sources like UV-LED, NIR-LED and laser diode have been employed to develop the optical sensor based on the scattering light and fluorescence light. The sensor system has high selectivity and sensitivity, that it can be used to monitor the quality of drinking water.

A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity

  • Park, Chang-Sub;Joo, Kyung-Il;Kang, Shin-Won;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-334
    • /
    • 2011
  • We proposed a poly-dimethylsiloxane (PDMS)-coated fiber Bragg grating (FBG) temperature sensor for enhancing temperature sensitivity. By embedding the bare FBG in a temperature-sensitive elastomeric polymer, the temperature sensitivity of the proposed structure could be effectively improved by 4.2 times higher than those of the conventional bare-type FBG sensors due to the high thermal expansion coefficient of the PDMS. We analyzed the temperature-sensitivity enhancement effect with the increased Bragg wavelength shift in our structure and dependence on the temperature sensitivity with respect to the cross-section area of the PDMS.

Wavefront Aberration Measurement with Shack-Hartmann Sensor and Point Source (Shack-Hartmann 파면분석기와 점광원을 이용한 광학부품의 수차 측정)

  • Lee, Jin-Seok;Kim, Hak-Young;Park, Yong-Pil;Park, No-Cheol;Hahn, Jae-Won
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.160-161
    • /
    • 2005
  • Using a Shack-Hartmann sensor, we construct an optical testing system measuring the wavefront error of small optical components. The systematic error of the sensor is compensated with a reference plane-wave system that produces almost perfect plane waves. Several types of lenses are tested using a point source that generates spherical waves emitted from a pinhole. The results of the optical testing obtained with the Shack- Hartman sensor are compared with those measured with Zygo interferometer.

  • PDF

Strain Analysis of Composite Laminates Using Optical Fiber Sensor (광섬유센서를 이용한 복합적층판의 변형률 해석)

  • Woo S.C.;Choi N.S.;Park L.Y.;Kwon I.B.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.111-114
    • /
    • 2004
  • Using the embedded optical fiber sensor of totally-reflected extrinsic Fabry-Perot interferometer(TR-EFPI), longitudinal strains(Ex) of the core and skin layers in glass fiber reinforced plastic(GFRP) cross-ply composite laminates have been measured. Transmission optical microscopy was employed to study the damage formation around the TR-EFPI sensor. It was observed that values of ex in the interior of the skin layer and the core layer measured by embedded TR-EFPI sensor was significantly higher than that of the specimen surface measured by strain gauges. The experimental results agreed well with those from finite element analysis on the basis of uniform stress model. Large strains in the core layer led to the occurrence of transverse cracks which drastically reduced the strain at failure of optical fiber sensor embedded in the core layer.

  • PDF

Realization of CCD Image Sensor Driver for Spectral-Domain Optical Measurement System (Spectral-Domain 광 계측을 위한 CCD 이미지 센서 드라이버 제작)

  • Kim, Hoon-Sup;Lee, Jung-Ryul;Eom, Jin-Seob
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.125-128
    • /
    • 2007
  • This paper presents Spectral-Domain optical measurement system using self-fabricated CCD sensor driver. The light source is a high brightness white LED and the detector is a 2048 array typed CCD image sensor. I have fabricated the CCD sensor driver to generate four pulse signals, which are the CCD-driving pulses. Using this Spectral Domain optical measurement system, the distance value between the reference mirror and the sample mirror can be obtained successfully.

  • PDF

Soft Optical Waveguide Sensors Tuned by Reflective Pigmentation for Robotic Applications (로봇 어플리케이션을 위해 반사 색소로 조정된 소프트 광도파로 센서)

  • Jamil, Babar;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Soft robotics has attracted a huge amount of interest in the recent decade or so, be it either actuators or sensors. Recently, a soft optical waveguide sensor has proven its effectiveness for various sensing applications such as strain, force, and bending measurements. The operation principle of the waveguide is simple, but the present technology is far too much complex to manufacture the waveguide. The waveguide fails to attract various practical applications in comparison to other types of sensors despite its superior safety and ease working principle. This study pursues to develop the soft sensors based on the optical phenomena so that the waveguide can be easily manufactured and its design can be conducted. Several physical properties of the waveguide are confirmed through the repetitive experiments in the aspects of strain, force, and bending of the waveguide. Finally, the waveguide sensor is embedded inside the actuator to verify the effectiveness of the proposed waveguide as well as to extend the application fields of the waveguide sensor.

A Study of the Real-time Sensing by the Optical Current Sensor for GIS

  • Park, Won-Zoo;Kim, Yeong-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.75-80
    • /
    • 2009
  • In this study, a Web server was constructed using LabVIEW's DataSocket, which makes possible acquisition, analysis, and saving in real time. The output value of the optical current sensor at the web server PC was measured and the output value was displayed using the Web browser of the client PC. DataSocket by LabVIEW makes the construction of a Web server easier than other languages and is compatible with other application programs. An optical current sensor was composed using a 1310 [nm] laser diode, and 9/125 [${\mu}m$] standard single mode optical fiber and was created to be a close type sensor. Data measurement using Web servers has the advantage of monitoring electric power systems at a great distance and can fuse IT technology and electric power systems. Also, this measurement uses inexpensive mounting and programming when compared to existing measurement equipment allowing the construction of a measurement system in any situation or surrounding.

Crack detection study for hydraulic concrete using PPP-BOTDA

  • Huang, Xiaofei;Yang, Meng;Feng, Longlong;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Cao, Wenhan
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.75-83
    • /
    • 2017
  • Effectively monitoring the concrete cracks is an urgent question to be solved in the structural safety monitoring while cracks in hydraulic concrete structures are ubiquitous. In this paper, two experiments are designed based on the measuring principle of Pulse-Pre pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) utilizing Brillouin optical fiber sensor to monitor concrete cracks. More specifically, "V" shaped optical fiber sensor is proposed to determine the position of the initial crack and the experiment illustrates that the concrete crack position can be located by the mutation position of optical fiber strain. Further, Brillouin distributed optical fiber sensor and preinstall cracks are set at different angles and loads until the optical fiber is fractured. Through the monitoring data, it can be concluded that the variation law of optical fiber strain can basically reflect the propagation trend of the cracks in hydraulic concrete structures.

A Study of the Boring Bar Vibration Measurement using Optical Fiber Sensor (보링바 고유진동 계측을 위한 광섬유 진동센서 연구)

  • Song, Doo-Sang;Hong, Jun-Hee;Jeong, Hwang-Young;Kang, Dae-Hwa;Kim, Byung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.107-113
    • /
    • 2009
  • In this paper, we studied of measurement the vibration of natural frequency using optical fiber sensor. The boring bar for measurement of vibration in use optical fiber sensor has the advantage of direct measure for the frequency than accelerometer. Because it deal with output value on electrical signal of optical fiber in physical disturbance when it measures the frequency of vibration. The optical fiber sensor measured the vibration of boring bar by the gap in sensing jig while optical fiber just kept contact with boring bar. A prototype system was composed of jig part with gap and optical system part. In this paper, we found out the possibility to measurement of vibration by the gap in use optical fiber.