DOI QR코드

DOI QR Code

Crack detection study for hydraulic concrete using PPP-BOTDA

  • Huang, Xiaofei (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University) ;
  • Yang, Meng (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University) ;
  • Feng, Longlong (Gansu Middle East Construction Management Consulting Group) ;
  • Gu, Hao (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University) ;
  • Su, Huaizhi (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University) ;
  • Cui, Xinbo (Information Center of land and resources in binzhou city) ;
  • Cao, Wenhan (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University)
  • Received : 2016.05.12
  • Accepted : 2017.06.14
  • Published : 2017.07.25

Abstract

Effectively monitoring the concrete cracks is an urgent question to be solved in the structural safety monitoring while cracks in hydraulic concrete structures are ubiquitous. In this paper, two experiments are designed based on the measuring principle of Pulse-Pre pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) utilizing Brillouin optical fiber sensor to monitor concrete cracks. More specifically, "V" shaped optical fiber sensor is proposed to determine the position of the initial crack and the experiment illustrates that the concrete crack position can be located by the mutation position of optical fiber strain. Further, Brillouin distributed optical fiber sensor and preinstall cracks are set at different angles and loads until the optical fiber is fractured. Through the monitoring data, it can be concluded that the variation law of optical fiber strain can basically reflect the propagation trend of the cracks in hydraulic concrete structures.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Fundamental Research Funds for the Central Universities, Jiangsu Natural Science Foundation

References

  1. Bao, X., Brown, A., Demerchant, M. et al. (1999), "Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (10-ns) pulses", Opt. Lett., 24(8), 510-512. https://doi.org/10.1364/OL.24.000510
  2. Bao, Y., Tang, F., Chen, Y., Meng, W., Huang, Y. and Chen, G. (2016), "Concrete pavement monitoring with PPP-BOTDA distributed strain and crack sensors", Smart Struct. Syst., 18(3), 405-423. https://doi.org/10.12989/sss.2016.18.3.405
  3. Brown, A.W, Colpitts, B.G. and Brown, K. (2005), "Distributed sensor based on dark-pulse Brillouin scattering", IEEE Photonics Technol. Lett., 17(7), 1501-1503. https://doi.org/10.1109/LPT.2005.848400
  4. Chen, S.S., Fu, Z.Z., Wei, K.M. and Han, H.Q. (2016), "Seismic responses of high concrete face rockfill dams: A case study", Water Sci. Eng., 9(3), 195-204. https://doi.org/10.1016/j.wse.2016.09.002
  5. Falciai, R. and Trono, C. (2005), "Curved elastic beam with opposed fiber-Bragg gratings for measurement of large displacements with temperature compensation", IEEE Sens. J., 5(6), 1310-1314. https://doi.org/10.1109/JSEN.2005.844344
  6. Francois, N. and Felix, D. (2015), "Describing failure in geomaterials using second-order work approach", Water Sci. Eng., 8(2), 89-95. https://doi.org/10.1016/j.wse.2015.05.001
  7. Galindez-Jamioy, C.A. and Lopez-Higuera, J.M. (2012), "Brillouin distributed fber sensors: An overview and applications", J. Sensors, 61(1), 276-283.
  8. Galindez, C.A., Madruga, F.J. and Lopez-Higuera, J.M. (2011), "Efficient dynamic events discrimination technique for fiber distributed Brillouin sensors", Opt. Express, 19(20), 18917-18926. https://doi.org/10.1364/OE.19.018917
  9. Garus, A. D, Krebber, K., and Hereth, R. (1995), "Distributed fiber optical sensors using Brillouin backscattering", Proceedings of SPIE-The International Society for Optical Engineering, 172-183.
  10. Geinitz, E., Jetschke. S., Ropke, U. et al. (1999), "The influence of pulse amplification on distributed fibre-optic Brillouin sensing and a method to compensate for systematic errors", Meas. Sci. Technol., 10(2), 112-116. https://doi.org/10.1088/0957-0233/10/2/009
  11. Gogolla, T. and Krebber, K. (1997), "Fiber sensors for distributed temperature and strain measurements using Brillouin scattering and frequency-domain methods", Proceedings of SPIE-The International Society for Optical Engineering, 3105.
  12. Goh, C.S., Mokhtar, M.R., Butler, S.A. et al. (2003), "Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package", IEEE Photonics Technol. Lett., 15(4), 557-559. https://doi.org/10.1109/LPT.2003.809300
  13. Horiguchi, T. and Tateda, M. (1989), "BOTDA-nondextructive measurment of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory", J. Lightwave Technol., 7(8), 1170-1176. https://doi.org/10.1109/50.32378
  14. Horiguchi, T., Kurashima, T. and Tateda, M. (1990), "Nondestructive measurement of optical fiber tensile strain distribution based on Brillouin spectroscopy", T. IEICE Japan, 7(3). 144-152.
  15. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039
  16. Kellie, B., Anthony, W.B. and Bruce, G.C. (2005), "Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor", Opt. Fiber Technol., 10(11), 131-145.
  17. Kim, S.H., Lee, J.J. and Kwon, I.B. (2002), "Structural monitoring of a bending beam using Brillouin distributed optical fiber sensors", Smart Mater. Struct., 11(3), 396-403(8). https://doi.org/10.1088/0964-1726/11/3/310
  18. Kobyakov, A., Sauer, M. and Chowdhury, D. (2010), "Stimulated Brillouin scattering in optical fibers", Adv. Opt. Photonics, 2(1), 1-59. https://doi.org/10.1364/AOP.2.000001
  19. Kurashima, T., Horiguchi, T., Izumita, H. et al. (1993), "Brillouin optical-fiber time domain reflectometry", IEICE T. Commun., 76(4), 382-390.
  20. Kurashima, T., Tansks, K. and Butler, S.A. (1997), "Application of fiber optic distributed sensor for strain measurement in civil engineering", SPIE, 32(41), 247-258.
  21. Lee, J., Yun, C. and Yoon, D. (2010), "Technical design note: A structural corrosion-monitoring sensor based on a pair of prestrained fiber Bragg gratings", Meas. Sci. Technol., 21(1), 1-7.
  22. Li, D. (2011), "Study on influence factors of pipeline bending deformation monitoring based on distributed optical fiber sensing technology", Zhongbei University.
  23. Liu, S. and Bauer, E. (2016), "Preface for special section on longterm behavior of dams", Water Sci. Eng., 9(3), 173-174. https://doi.org/10.1016/j.wse.2016.11.004
  24. Minardo, A. and Bernini, R.Z.L. (2009), "A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors", IEEE Sen. J., 9(6), 633-634. https://doi.org/10.1109/JSEN.2009.2019372
  25. Nikles, M., Thevenaz, L. and Robert, P.A. (1997), "Brillouin gain spectrum characterization in single-mode optical fibers", IEEE/OSA J. Lightwave Technol., 15(10), 1842-1851. https://doi.org/10.1109/50.633570
  26. Pan, J.Z. (2002), "There are no dams without cracks in the world", China Three Gorges construction, 9(4), 6-7.
  27. Pinto, A.M.R. and Lopez-Amo, M. (2012), "Photonic crystal fibers for sensing applications", J. Sensors, 2012(1), 276-283.
  28. Soto, M. A, and Thevenaz, L. (2013), "Modeling and evaluating the performance of Brillouin distributed optical fiber sensors", Opt. Express, 21(25), 31347. https://doi.org/10.1364/OE.21.031347
  29. Su, H.Z., Hu, J., Li, J.Y. and Wu, Z.R. (2013), "Deep stability evaluation of high-gravity dam under combining action of powerhouse and dam", Int. J. Geomech., 13(3), 257-272. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000206
  30. Su, H.Z., Li, J.Y., Cao, J.P. and Wen, Z. (2014), "Macrocomprehensive evaluation method of high rock slope stability in hydropower projects", Stoch. Env. Res. Risk A., 28(2), 213-224. https://doi.org/10.1007/s00477-013-0742-x
  31. Suh, K. and Lee, C. (2008), "Autocorrection method for differential attenuation in a fiber-optic distributed-temperature sensor", Opt. Lett., 33(16), 1845-1847. https://doi.org/10.1364/OL.33.001845
  32. Xie, C. (2013), "Research on structural health monitoring based on distributed optical fiber sensor based on BOTDA", Harbin Institute of Technology.
  33. Yang, M. and Liu, S. (2015), "Field tests and finite element modeling of a Prestressed Concrete Pipe pile-composite foundation", J. Civil Eng. KSCE, 7(19), 2067-2074.
  34. Yang, M., Su, H.Z. and Yan, X.Q. (2015), "Computation and analysis of high rocky slope safety in a water conservancy project", Discrete Dyn. Nat. Soc., 197579, 1-11.
  35. Zhu, H.H., Yin, J.H., Dong, J.H. and Zhang, L. (2010), "Physical modelling of sliding failure of concrete gravity dam under overloading condition", Geomech. Eng., 2(2), 89-106. https://doi.org/10.12989/gae.2010.2.2.089
  36. Zornoza, A., Sagues, M. and Loayssa, A. (2012), "Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA", J. Lightwave Technol., 30(8), 1066-1072. https://doi.org/10.1109/JLT.2011.2168808

Cited by

  1. Identification and evaluation of cracks in electrostatically actuated resonant gas sensors using Harris Hawk / Nelder Mead and perturbation methods vol.28, pp.1, 2017, https://doi.org/10.12989/sss.2021.28.1.121
  2. Drone-Assisted Image Processing Scheme using Frame-Based Location Identification for Crack and Energy Loss Detection in Building Envelopes vol.14, pp.19, 2021, https://doi.org/10.3390/en14196359