• Title/Summary/Keyword: Optical Pulses

Search Result 262, Processing Time 0.047 seconds

All optical clock recovery from 10 Gb/s RZ signal using an actively mode-locked figure eight laser incorporating a SLALOM (반도체 광증폭기 루프 거울을 포함한 8자형 레이저를 이용한 10Gb/s RZ 신호의 전광 클럭 추출)

  • 정희상;주무정;김광준;이종현
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.400-404
    • /
    • 2000
  • All-optical clock recovery from a 10 Gb/s RZ signal has been demonstrated using an actively mode-locked figure-eight laser incorporating a semiconductor optical amplifier in the loop-mirror scheme. Optical pulses with 10 ps pulse width were modulated by a LiNb03 external modulator at $2^{23}-1$ PRES and injected into the clock recovery circuit to extract optical pulses with 12 ps width. Regeneration of the original bit pattern has been accomplished by modulating the recovered clock with the same modulator, and no power penalty was observed at $10^{11}$..

  • PDF

Wideband Flat Optical Frequency Comb Generated from a Semiconductor Based 10 GHz Mode-Locked Laser with Intra-cavity Fabry-Perot Etalon

  • Leaird, Daniel E.;Weiner, Andrew M.;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • We report stable, wideband, flat-topped, 10 GHz optical frequency comb generation from a semiconductor-based mode-locked ring laser with an intra-cavity high finesse Fabry-Perot etalon. We demonstrate a stable 10 GHz comb with greater than 200 lines within a spectral power variation below 1 dB, which is the largest value obtained from a similar mode-locked laser in our knowledge. Greater than 20 dB of the spectral peak to deep ratio at 0.02 nm resolution, ~92 femtosecond timing jitter over 1 kHz to 1 MHz range, and non-averaged time traces of pulses confirm very stable optical frequency comb lines.

Structural Analysis of a Cavitary Region Created by Femtosecond Laser Process

  • Fujii, Takaaki;Goya, Kenji;Watanabe, Kazuhiro
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.5-10
    • /
    • 2015
  • Femtosecond laser machining has been applied for creating a sensor function in silica glass optical fibers. Femtosecond laser pulses make it possible to fabricate micro structures in processed regions of a very thin glass fiber line because femtosecond laser pulses can extremely minimize thermal effects. With the laser machining to optical fiber using a single shot of 210-fs laser at a wavelength of 800 nm, it was observed that a processed region surrounded a thin layer which seemed to be a hollow cavity monitored by scanning electron microscopy (SEM). This study aims at a theoretical investigation for the processed region by using a numerical analysis in order to embed sensing function to optical fibers. Numerical methods based finite element method (FEM) has been used for an optical waveguide modeling. This report suggests two types modeling and describes a comparative study on optical losses obtained by the experiment and the numerical analysis.

Optical Pulse Compression at $1.319{\mu}m$ Through Fiber-grating Pair (광섬유와 회절격자를 이용한 $1.319{\mu}m$ 파장 광펄스의 압축)

  • 이재승;박희갑;심창섭
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.13-19
    • /
    • 1991
  • Utilizing self-phase modulation effects of a dispersion-shifted fiber and delayline characteristics of two gratings, mode-locked 80 ps pulses at 1.319 $\mu \textrm m$ wavelength from a Nd:YAG laser are compressed to 2.1 ps. This experiment is suitable for studying the transmission characteristics of high energy short pulses along normal fibers in zero dispersion regime.

  • PDF

Wavelength-Tunable, Passively Mode-Locked Erbium-Doped Fiber Master-Oscillator Incorporating a Semiconductor Saturable Absorber Mirror

  • Vazquez-Zuniga, Luis A.;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.117-129
    • /
    • 2013
  • We briefly review the recent progress in passively mode-locked fiber lasers (PMLFLs) based on semiconductor saturable absorber mirrors (SESAMs) and discuss the detailed characterization of a SESAM-based, passively mode-locked erbium-doped fiber (EDF) laser operating in the 1.5-${\mu}m$ spectral range for various configurations. A simple and compact design of the laser cavity enables the PMLFL to generate either femtosecond or wavelength-tunable picosecond pulses with high stability as the intra-cavity filtering method is altered. All the cavities investigated in our experiments present self-starting, continuous-wave mode-locking with no Q-switching instabilities. The excellent stability of the source eventually enables the wavelength-tunable PMLFL to be used as a master oscillator for a power-amplifier source based on a large-core EDF, generating picosecond pulses of >10-kW peak power and >100-nJ pulse energy.