• Title/Summary/Keyword: Optical Microscopy

Search Result 1,443, Processing Time 0.066 seconds

Noninvasive study of Drug Delivery Systems using Nuclear Magnetic Resonance Microimaging (핵자기공명 현미영상법을 이용한 약물전달체계의 비파괴연구)

  • 이동훈;고락길
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.173-178
    • /
    • 1997
  • pH sensitive polymers have long been utilized as one important type among many interesting drug delivery systems. This is due to the reason of different pH environments in human organs, which requires different pH control mechanism depending upon the organs. In the present study the pH sensitivity was investigated for both pH sensitive and pH insensitive biopolymers using the diffusion effect along with the swelling effect. NMR microscopy was performed along with optical microscopy. For the analysis of diffusion effect, UMR Microscopy was perFormed to measure diffusion coefficients for various liquids such as distilled water, acetone and DMSO(dimethyl sulfoxide). Also, this technique is expected to contribute to the studies for many pH drug delivery systems.

  • PDF

A Study on the Microstructures of Rapidly Solidified Ti-48Al-xCr Intermetallic Compounds (급속응고한 Ti-48Al-xCr 금속간화합물의 미세조직에 관한 연구)

  • Jeong, Tae-Ho;Hwang, Jung-Hyun;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.19 no.6
    • /
    • pp.472-483
    • /
    • 1999
  • The effects of rapid solidification and Cr addition to the microstructure variations of the rapid solidified Ti-48Al-xCr(X = 2,4,6) alloys have been investigated using X-ray diffractometry, optical microscopy, scanning electron microscopy and transmission electron microscopy. The segregated coarse ${\gamma}$ phase was eliminated and the microstructure was refined by rapid solidification of the cooling rate of $10^4-10^6\;^{\circ}C/sec$. The lattice parameters and tetragonality of ${\gamma}$ phase decrease with the increase Cr content and by the rapid solidification. Non-equilibrium phase ${\alpha}$ remains at room temperature condition, which would be resulted from the restriction of phase transformation ${\alpha}$ to ${\alpha}_2+{\gamma}$.

  • PDF

NO2 gas sensing based on graphene synthesized via chemical reduction process of exfoliated graphene oxide

  • Khai, Tran Van;Prachuporn, Maneeratanasarn;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.84-91
    • /
    • 2012
  • Single and few-layer graphene nanosheets (GNs) have successfully synthesized by a modified Hummer's method followed by chemical reduction of exfoliated graphene oxide (GO) in the presence of hydrazine monohydrate. GO and GNs were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffractions (XRD), Raman spectroscopy, Transmission electron microscopy (TEM), Atomic force microscopy (AFM), Optical microscopy (OM) and by electrical conductivity measurements. The result showed that electrical conductivity of GNs was significantly improved, from $4.2{\times}10^{-4}$ S/m for GO to 12 S/m for GNs, possibly due to the removal of oxygen-containing functional group during chemical reduction. In addition, the $NO_2$ gas sensing characteristics of GNs are also discussed.

Near Infrared Femtosecond Laser and Its Two-photon Bio-imaging Technology (근적외선 펨토초 레이저 및 이광자 바이오 영상 기술)

  • Song, D.H.;Seo, H.S.;Lee, S.K.;Huh, C.;Park, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Over the last three decades, the development of Ti:sapphire femtosecond lasers has led to advancements in scientific and industrial fields. In particular, these advanced lasers show great potential for applications with bio-imaging and medical surgery, such as two-photon microscopy, nonlinear Raman microscopy, optical coherence tomography, and ophthalmic surgery. Herein, we present a detailed description of the theoretical and experimental physics of Kerr-lens mode-locked femtosecond Ti:sapphire lasers and its two-photon microscopy.

Rough surface characterization using off-axis digital holographic microscopy compensated with self-hologram rotation

  • Ibrahim, Dahi Ghareab Abdelsalam
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1261-1267
    • /
    • 2018
  • In this paper, an off-axis digital holographic microscopy compensated with self-hologram rotation is presented. The process is implemented via subtracting the unwrapped phase maps of the off-axis parabolic hologram and its rotation $180^{\circ}$ to eliminate the tilt induced by the angle between the spherical object wave O and the plane reference wave R. Merit of the proposed method is that it can be done without prior knowledge of physical parameters and hence can reconstruct a parabolic hologram of $1024{\times}768$ pixels within tens of milliseconds since it doesn't require a digital reference wave. The method is applied to characterize rough gold bumps and the obtained results were compared with those extracted from the conventional reconstruction method. The comparison showed that the proposed method can characterize rough surfaces with excellent contrast and in realtime. Merit of the proposed method is that it can be used for monitoring smaller biological cells and micro-fluidic devices.

Displacement measurement sensor using astigmatic confocal technology

  • J.W. Seo;D.K. Kang;Lee, J.H.;Kim, D.M.;D.G. Gweon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.163.2-163
    • /
    • 2001
  • Confocal scanning microscopy (CSM) has been reported as an excellent method using the optical probe in scanning probe microscopy (SPM). Transmission or reflection confocal scanning microscopy (TCSM, RCSM) has been used in the three-dimensional reconstruction of specimen or the non-destructive measurement in vivo. The axial movement of the primary focal point having the information of specimen gives a good measurement performance with the great sensitivity. Application of the confocal theory and astigmatism to displacement measurement sensor uses the aperture as the pinhole or slit after collecting lens relating to confocal response in non-contact measurement; and astigmatic lens using four-segments detector as short-range sensor, long-range one combining the grating and rotary one hating the rotary directional grating. The aperture type can play an ...

  • PDF

Introduction to Cathodoluminescence Spectroscopy Using Scanning Transmission Electron Microscopy (주사 투과 전자현미경을 활용한 음극형광 분석법)

  • Sung-Dae Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.326-331
    • /
    • 2023
  • The utilization of scanning transmission electron microscopy (STEM) in conjunction with cathodoluminescence (CL) has emerged as a valuable tool for the investigation of material optical properties. In recent years, this technique has facilitated significant advancements in the fields of plasmonics and quantum emitters by surpassing prior technical restrictions. The review commences by providing an outline of the diverse STEM-CL operating modes and technical aspects of the instrumentation. The review explains the fundamental physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments for different types of excitations. Additionally, the review compares STEM-CL to other related techniques such as scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy.

Development of a Total Internal Reflection Fluorescence (TIRF) Microscopy for Precise Imaging the Drying Pattern of a Sessile Droplet (고착 액적 증발면의 정밀 관측을 위한 전반사 형광 현미경 기법 개발)

  • Wonho Cho;Jinkee Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.65-74
    • /
    • 2023
  • Compared to epifluorescence(EPI) microscopy which captures fluorescence from the entire depth of sample, total internal reflection fluorescence(TIRF) can selectively visualize only a single surface of it. TIRF uses a thin evanescent field generated by the total internal reflection of laser light on surface. However, conventional TIRF system are designed for total internal reflection to occur at the upper surface of sample, making them unsuitable for sessile droplet imaging. We designed a TIRF system suitable for a sessile droplet imaging by utilizing slide glass as a lightguide. We presented the details for constructing the TIRF system using a prism, slide glass, air slit, and optical trap. Then, we compared the TIRF with EPI by imaging the droplet with fluorescent particles during its drying process. As a result, TIRF allows us to distinctly visualize the drying pattern on the bottom surface of droplet.

Design and Development of an Ultralow Optical Loss Mirror Coating for Zerodur Substrate

  • Cho, Hyun-Ju;Lee, Jae-Cheul;Lee, Sang-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.80-84
    • /
    • 2012
  • A high reflectance mirror, which has very low absorption and scattering loss, was coated onto a crystalline substrate by ion beam sputtering and then annealed at $450^{\circ}C$. We carefully selected the mirror coating material, and designed the high reflectance mirror, in order to avoid UV degradation which comes from the He-Ne plasma. We measured the surface roughness of the Zerodur substrate using phase shift interferometry and atomic force microscopy, and compared it with the TIS scattering of the mirror. The cavity ring-down method was used to measure the absorption of the mirror, and the thin film structure was correlated to its results. We also compared the optical properties of coated mirrors before and after annealing.

Sensing System for Measuring Deflection of Microcantilever (마이크로 캔틸레버 굽힘 측정을 위한 센싱시스템)

  • Kim, Hyun-Chul;Lee, Sang-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.961-964
    • /
    • 2012
  • This paper presents a sensing system to measure the deflection of a microcantilever in an atomic force microscope. In general, the optical lever method and interferometry are used for the sensing system; however, their size and cost leaves considerable room for improvement. Therefore, we used an optical pickup head whose operating principle is based on the astigmatism of the commercial optical disk drives. The developed sensing system was applied to a laboratory atomic force microscope, and satisfactory results were obtained.