DOI QR코드

DOI QR Code

Development of a Total Internal Reflection Fluorescence (TIRF) Microscopy for Precise Imaging the Drying Pattern of a Sessile Droplet

고착 액적 증발면의 정밀 관측을 위한 전반사 형광 현미경 기법 개발

  • Wonho Cho (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Jinkee Lee (Institute of Quantum Biophysics, Sungkyunkwan University)
  • Received : 2023.10.30
  • Accepted : 2023.11.21
  • Published : 2023.11.30

Abstract

Compared to epifluorescence(EPI) microscopy which captures fluorescence from the entire depth of sample, total internal reflection fluorescence(TIRF) can selectively visualize only a single surface of it. TIRF uses a thin evanescent field generated by the total internal reflection of laser light on surface. However, conventional TIRF system are designed for total internal reflection to occur at the upper surface of sample, making them unsuitable for sessile droplet imaging. We designed a TIRF system suitable for a sessile droplet imaging by utilizing slide glass as a lightguide. We presented the details for constructing the TIRF system using a prism, slide glass, air slit, and optical trap. Then, we compared the TIRF with EPI by imaging the droplet with fluorescent particles during its drying process. As a result, TIRF allows us to distinctly visualize the drying pattern on the bottom surface of droplet.

Keywords

Acknowledgement

본 연구는 정부(교육부 및 미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. NRF2021R1A6A1A03039696, No. 2020R1A2C3010568).

References

  1. Jeong, E. H., and Kim, K. C., 2005, "Principle and Application of Micro PIV," Journal of the Korean Society of Visualization, Vol. 3(1), pp.36-42.
  2. Song, R., and Lee, J., 2016, "Hemodynamical analysis by viscosity characteristics of artificial blood for μ-PIV experiment of Radio-cephalic arteriovenous fistula (RC-AVF)," Journal of the Korean Society of Visualization, Vol. 14(1), pp.33-39. https://doi.org/10.5407/JKSV.2016.14.1.033
  3. Min, Y. U., Lee, D. Y., and Kim, K. C., 2010, "Development of Hybrid Micro/Nano PIV system, " Journal of the Korean Society of Visualization, Vol. 8(4), pp.31-37. https://doi.org/10.5407/JKSV.2010.8.4.031
  4. Park, S. C., Song, R., Kim, S., Kim, H. K., Kim, S. H., and Lee, J., 2016, "Fabrication of artificial arteriovenous fistula and analysis of flow field and shear stress by using μ-PIV technology," Journal of Mechanical Science and Technology, Vol. 30, pp.5503-5511. https://doi.org/10.1007/s12206-016-1118-1
  5. Masters, B. R., 2010, "The development of fluorescence microscopy," Encyclopedia of life sciences, pp.1-9.
  6. Lichtman, J. W. and Conchello, J. A., 2005, "Fluorescence microscopy," Nature methods, Vol. 2(12), pp.910-919. https://doi.org/10.1038/nmeth817
  7. Yoda, M., 2020, "Super-resolution imaging in fluid mechanics using new illumination approaches," Annual Review of Fluid Mechanics, Vol. 52, pp.369-393. https://doi.org/10.1146/annurev-fluid-010719-060059
  8. Mattheyses, A. L., Simon, S. M., and Rappoport, J. Z., 2010, "Imaging with total internal reflection fluorescence microscopy for the cell biologist," Journal of cell science, Vol. 123(21), pp.3621-3628. https://doi.org/10.1242/jcs.056218
  9. Axelrod, D., 2001, "Selective imaging of surface fluorescence with very high aperture microscope objectives," Journal of biomedical optics, Vol. 6(1), pp.6-13. https://doi.org/10.1117/1.1335689
  10. Martin-Fernandez, M. L., Tynan, C. J., and Webb, S. E. D., 2013,"A 'pocket guide' to total internal reflection fluorescence," Journal of microscopy, Vol. 252(1), pp.16-22. https://doi.org/10.1111/jmi.12070
  11. Axelrod, D., 2001, "Total internal reflection fluorescence microscopy in cell biology," Traffic, Vol. 2(11), pp.764-774. https://doi.org/10.1034/j.1600-0854.2001.21104.x
  12. Axelrod, D., 2022, Total Internal Reflection Fluorescence (TIRF) and Evanescence Microscopies, IOP Publishing.
  13. Lam, J. Y., Wu, Y., Dimou, E., Zhang, Z., Cheetham, M. R., Korbel, M., ... and Danial, J. S., 2022, "An economic, square-shaped flat-field illumination module for TIRF-based super-resolution microscopy," Biophysical Reports, Vol. 2(1).
  14. Asanov, A., Sampieri, A., Moreno, C., Pacheco, J., Salgado, A., Sherry, R., and Vaca, L., 2015, "Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels," Cell Calcium, Vol. 57(1), pp.1-13. https://doi.org/10.1016/j.ceca.2014.10.011
  15. Gibbs, D. R., Kaur, A., Megalathan, A., Sapkota, K., and Dhakal, S., 2018, "Build your own microscope: step-by-step guide for building a prism-based TIRF microscope," Methods and Protocols, Vol. 1(4), pp.40.
  16. Fairlamb, M. S., Whitaker, A. M., Bain, F. E., Spies, M., and Freudenthal, B. D., 2021, "Construction of a three-color prism-based TIRF microscope to study the interactions and dynamics of macromolecules," Biology, Vol. 10(7), pp.571.
  17. Charlton, C., Gubala, V., Gandhiraman, R. P., Wiechecki, J., Le, N. C. H., Coyle, C., ... and Williams, D. E., 2011, "TIRF microscopy as a screening method for non-specific binding on surfaces," Journal of colloid and interface science, Vol. 354(1), pp.405-409. https://doi.org/10.1016/j.jcis.2010.10.029
  18. Asanov, A., Zepeda, A., and Vaca, L., 2010, "A novel form of Total Internal Reflection Fluorescence Microscopy (LG-TIRFM) reveals different and independent lipid raft domains in living cells," Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, Vol. 1801(2), pp.147-155.
  19. Zissis, G. J., 1995, Dispersive prisms and gratings, Handbook of optics.
  20. Ramachandran, S., Cohen, D. A., Quist, A. P., and Lal, R., 2013, "High performance, LED powered, waveguide based total internal reflection microscopy," Scientific reports, Vol. 3(1), pp.2133.