• Title/Summary/Keyword: Optical Microscopy

Search Result 1,439, Processing Time 0.027 seconds

Intraannual and Vertical Variations in Rays of Pinus koraiensis and Larix kaempferi Woods Grown in Korea (잣나무와 낙엽송재 방사조직의 연륜 내 및 축방향 변이성)

  • Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • Variation of wood rays within a growth ring and along axial direction in Pinus koraiensis and Larix kaempferi, which are important Korean commercial softwoods, was examined to get some useful information for their effective utilization. Ray height in cell number and ray number per $0.25mm^2$ in tangential section were investigated by optical microscopy. The average heights of uniseriate rays in Pinus koraiensis and Larix kaempferi were 6.3 and 9.1 cells, respectively. The average numbers of uniseriate rays per $0.25mm^2$ in Pinus koraiensis and Larix kaempferi were 6.5 and 7.5, respectively. The average heights of fusiform rays were about 20 cells but were not significantly different in both species. From earlywood to latewood within a growth ring, the heights of uniseriate and fusiform rays decreased but their numbers remained almost constant. Along axial direction, the heights of uniseriate rays in both species increased with the increase of stem height, and the numbers of uniseriate rays per $0.25mm^2$ in Pinus koraiensis were nearly constant from 0.2 m to 5.2 m but increased up to 19.2 m beyond 5.2 m. However, a constant pattern in the numbers of uniseriate rays was not observed in Larix kaempferi. The heights of fusiform rays in both species were the highest in middle part of stems but were the lowest in base and top of trees. In conclusion, the ray variation pattern was comparatively clear within a growth ring but not clear along axial direction.

Anatomical Characteristics of Kenaf Grown in Reclaimed Land(I)-Differences in Phloem and Xylem with Growth Period and Height- (간척지에서 재배된 양마(Kenaf)의 해부학적 특성(I)-사부와 목부의 생장기관과 높이에 따른 차이-)

  • Lee, Seon-Hwa;Lee, Se-na;Kwon, Sung-Min;Lee, Myoung-Ku;Cho, Dong-Ha;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.43-49
    • /
    • 2007
  • Anatomical properties of Kenaf (Hibiscus cannabinus L.) planted in a reclaimed-land of Korea were examined to understand the growth characteristics by an optical and scanning electron microscopy. The samples of kenaf were taken from four positions of the stem (3, 35, 70, 105 cm above from the ground) in four growth periods (July. August, September, October) from seeding planted in the middle of May. Bast fiber, phloem rays, cortex parenchyma cells and sieve tube members were observed in phloem, and vessel elements, fibers and rays in xylem. Solitary and multiple radial pores existed in xylem. The cell types of ray parenchyma in radial section were procumbent, upright, and square. The intervascular pitting showed an alternate type. Xylem proportion, the number of bast fibers and dimension of phloem rays increased with increasing growth period, and decreased with increasing stem height. The proportion of multiseriate rays was higher than that of uniseriate and biseriate rays in xylem with increasing growth period. On the other hand, The proportion of multiseriate rays was lower than that of uniseriate and biseriate rays in xylem with increasing stem height.

Characterization and Formation Mechanism of Zr-Cu and Zr-Cu-Al Metallic Glass Thin Film by Sputtering Process

  • Lee, Chang-Hun;Sun, Ju-Hyun;Moon, Kyoung-Il;Shin, Seung-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.271-272
    • /
    • 2012
  • Bulk Metallic Glasses (BMGs or amorphous alloy) exhibit high strength and good corrosion resistance. Applications of thin films and micro parts of BMGs have been used a lot since its inception in the research of BMGs. However, Application and fabrication of BMGs are limited to make structural materials. Thin films of BMGs which is sputtered on the surface of structural materials by sputtering process is used to improve limits about application of BMGs. In order to investigate the difference of properties between designed alloys and thin films, we identified that thin films deposited on the surface that have the characteristic of the amorphous films and the composition of designed alloys. Zr-Cu (Cu=30, 35, 38, 40, 50 at.%) and Zr-Cu-Al (Al=10 at.% fixed, Cu=26, 30, 34, 38 at.%) alloys were fabricated with Zr (99.7% purity), Cu (99.997% purity), and Al (99.99% purity) as melting 5 times by arc melting method before rods 2mm in diameter was manufactured. In order to analyze GFA (Glass Forming Ability), rods were observed by Optical Microscopy and SEM and $T_g$, $T_x$, ($T_x$ is crystallization temperature and $T_g$ is the glass transition temperature) and Tm were measured by DTA and DSC. Powder was manufactured by Gas Atomizer and target was sintered using powder in large supercooled liquid region ($=T_x-T_g$) by SPS(Spark Plasma Sintering). Amorphous foil was prepared by RSP process with 5 gram alloy button. The composition of the foil and sputtered thin film was analyzed by EDS and EPMA. In the result of DSC curve, binary alloys ($Zr_{62}Cu_{38}$, $Zr_{60}Cu_{40}$, $Zr_{50}Cu_{50}$) and ternary alloys ($Zr_{64}Al_{10}Cu_{26}$, $Zr_{56}Al_{10}Cu_{34}$, $Zr_{52}Al_{10}Cu_{38}$) have $T_g$ except for $Zr_{70}Cu_{30}$ and $Zr_{60}Al_{10}Cu_{30}$. The compositions with $T_g$ made into powders. Figure shows XRD data of thin film showed similar hollow peak.

  • PDF

Effects of Lead, Copper and Cadmium on Pseudomonas cepacia KH410 Isolated from Freshwater Plant Root (담수식물 근계로부터 분리된 Pseudomonas cepacia KH410 균주에 대한 납, 구리, 카드뮴의 영향)

  • 김영희
    • Korean Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.26-30
    • /
    • 2002
  • A ubiquitous bacterium,Effects of Lead, Copper and Cadmium on Pseudomonas cepacia KH410 Isolated from Freshwater Plant Root was isolated from freshwater plant root and interactions of lead, copper and cadmium with this strain was studied. Mass production of dry cell weight 2.72 g-DCW/ι-medium was obtained by cultivation in a nutrient medium containing 1% yeast extract, 1% soytone and 0.5% NaCl, pH 7.0, at temperature of 28℃ for 24 hrs under aeration. The mass of dry cell produced after exposure with 100 mg/ι of heavy metal was 1.98 g/ι for lead, 1.58 g/ι for copper and 0.20 g/ι for cadmium, respectively. The minimal inhibitory concentrations (MIC) for each heavy metal was 1.3 mM for lead,0.8 mM for copper and 0.4 mM fur cadmium, respectively. Cell aggregation occurred by each heavy metal exposure was observed from 1 day to 4 days by an optical microscope. Entrapment, precipitation effects on cell by heavy metals between 10 min and two hours were examined by an electron microscopy. Cadmium appeared to be the most toxic on cells and the order of toxicity was cadmium>copper>lead.

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics (RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향)

  • Kim, In Young;Shin, Seung Wook;Kim, Min Sung;Yun, Jae Ho;Heo, Gi Seok;Jeong, Chae Hwan;Moon, Jong-Ha;Lee, Jeong Yong;Kim, Jin Hyoek
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

Characterization of B-doped a-SiC:H Thin Films Grown by Plasma-Enhanced Chemical Vapor Deposition (플라즈마 화학증착법으로 제조된 B-doped a-SiC:H 박막의 물성)

  • Kim, Hyeon-Cheol;Sin, Hyeok-Jae;Lee, Jae-Shin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1006-1011
    • /
    • 1999
  • B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4$, $CH_4$ and $B_2H_6$. Microstructures and chemical properties of a-SiC:H films grown with varing the volume ratio of $CH_4$ to $SiH_4$ were characterized with various analysis methods including scanning electron microscopy(SEM), X-ray diffractometry(XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy. X-ray photoelectron spectroscopy(XPS), UV absorption spectroscopy and photoconductivity measurements. While Si:H films grown without $CH_4$ showed amorphous state, the addition of $CH_4$ during deposition enhanced the development of a microcrystalline phase. By introducing C atoms into the film, Si-Si and Si--$\textrm{H}_{n}$ bonds of a -Si:H films were gradually replaced by Si-C, C-C, and Si--$\textrm{C}_{n}\textrm{H}_{m}$ bonds. Consequently, the electrical resistivity and optical bandgap of a-SiC:H films were increased with the C concentration in the film.

  • PDF

The Optical Properties of B2O3-Bi2O3-PbO-SiO2 Glass System (B2O3-Bi2O3-PbO-SiO2계 유리의 광학적인 특성)

  • Joung, Maeng Sig;Kim, Hong Seon;Lee, Su Dae
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 2000
  • Four glasses of $B_2O_3-Bi_2O_3-PbO-SiO_2$ (BBPS) system were prepared by melting the appropriate amounts of reagent grade oxides of $B_2O_3$, $Bi_2O_3$, PbO, and $SiO_2$ in an open crucible. The differential thermal analysis showed crystallization temperature decreased with increasing $Bi_2O_3$ or PbO content in the sample. The structures of glasses system were studied using scanning electron microscopy and Fourier transform-Infra red (FT-IR) spectroscopy. The UV cut-off and refractive index were found to be sensitive to the $Pb^{+2}$ and $Bi^{+3}$ content in the glasses. The behavior of the IR spectra of the glasses in the BP series was consistent with a role of $Bi_2O_3$ as a network former. In the BP series of glasses, the result of IR spectrum indicated that PbO behaved as a network former.

  • PDF

The Effect of Various Plaque Control Devices on Roughness and Morphology of Titanium Implant Surface (다양한 치태조절기구가 타이타늄 임프란트의 표면조도와 형태에 미치는 영향)

  • Choi, Seoung-Hwan;Lim, Jeong-Su;Song, In-Taeck;Kim, Hyoug-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.337-350
    • /
    • 1998
  • The purpose of this' study was to compare surface roughness and morphologic changes after use of various plaque control devices to titanium implant surfaces. The study materials were 6 ITI titanium implants($Bonefit^{(R)}$) and 5 plaque control devices. 6 implants were divided into 6 different groups and instrumented by each plaque control devices as follows. 1) Group I : untreated control 2) Group II : Titanium curette(Titanium $curette^{(R)}$, 3i) 80 vertical/horizontal strokes 3) Group III : Plastic curette($Implacare^{(R)}$, Hu-Friedy) 80 vertical/horizontal strokes 4) Group N : Plastic tip-ultrasonic scaler($Amdent^{(R)}$, Amdent) 160 seconds 5) Group V : Rotating interdental brush($Identobrush^{(R)}$, Identoflex) 160 seconds 6) Group VI : Abrasive rubber cup polisher($Zircate^{(R)}$, Prophy paste, Dentsply) 160 sec-onds. All specimens were prepared for evaluation by surface roughness tester, optical stereomicroscopy(OM) and scanning electron microscopy(SEM). The Ra and Rt mean values of the tested specimens were 1) Group I ($Ra=0.170{\pm}0.007{\mu}m$, $Rt=1.297{\pm}0.016{\mu}m$) 2) Group II ($Ra=0.209{\pm}0.006{\mu}m$, $Rt=1.602{\pm}0.110{\mu}m$) 3) Group III ($Ra=0.179{\pm}0.001{\mu}m$, $Rt=1.429{\pm}0.055{\mu}m$) 4) Group IV ($Ra=0.182{\pm}0.005{\mu}m$, $Rt=1.511{\pm}0.085{\mu}m$) 5) Group V ($Ra=0.301{\pm}0.008{\mu}m$, $Rt=1.882{\pm}0.131{\mu}m$) 6) Group VI ($Ra=0.147{\pm}0.010{\mu}m$, $Rt=1.059{\pm}0.021{\mu}m$) In Ra values, experimental group II, V, VI were statistically significant different when compared with control. OM and SEM observation showed that experimental group III, IV were minimal changes when compared with control and group VI was smoothest among other experimental groups. The results suggested that plastic curette and plastic tip-ultrasonic scaler were predictable devices to titanium implant surface.

  • PDF