• Title/Summary/Keyword: Optical Microscope

Search Result 1,396, Processing Time 0.026 seconds

Fabrication and Linear & Nonlinear Optical Characterization of Photonic Crystals (포토닉 밴드갭 광결정의 제작과 선형 및 비선형 광학 특성 연구)

  • Ha Na Yeong;U Yeon Gyeong;Hwang Ji-Su;Jang Hye-Jeong;Park Byeong-Ju;U Jeong-Won
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.162-163
    • /
    • 2002
  • 1-D photonic band-gap structure is identified in a cholesteric liquid crystal system. The optical transmission spectrum is measured and compared with the theoretical analysis. Nonlinear transmission is measured near the band edge. Also 3-D photonic band-gap structures are fabricated from dielectric colloidal polystyrene beads through a centrifuge method. The fabricated photonic crystals exhibit opalescent colors under white light and show a clear diffraction peak dependent on the incident angle of the light beam. Also the scanning electron microscope image was taken to verify the face-centered cubic crystal structure. Bragg's law and Snell's law are employed to describe the position of angle resolved diffraction peaks. It was shown that the optically deduced effective refractive index and lattice constants were in good agreement with the crystal structure identified by scanning electron microscope.

  • PDF

A Study on The Birefringence Measurement in Precision Optical Product (정밀 광학 부품의 복굴절 측정 방법에 관한 연구)

  • Min, In Ki;Ko, Young Bae;Kwon, Chang Oh;Yoon, Kyung Hwan
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.90-94
    • /
    • 2012
  • Recently, injection molding process became more popular than ever to produce large quantities of high precision products. Extensive studies have been conducted for reducing the residual stresses and birefringence in injection-molded optical products. Flow-induced and thermally-induced stresses and birefringence have been found as two main sources during injection molding process. Generally, quantitative value of birefringence can be measured with polarizing microscope using the compensator. However, it is difficult to measure low order retardation with microscope, so developing a measurement system for low order optical path difference is in need. In the present paper, a system using Photo Elastic Modulator (PEM) is demonstrated to measure low phase retardation in injection-molded products.

  • PDF

Measurement Resolution of Edge Position in Digital Optical Imaging

  • Lee, Sang-Yoon;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 2000
  • The semiconductor industry relies on digital optical imaging for the overlay metrology of integrated circuit patterns. One critical performance demand in the particular application of digital imaging is placed on the edge resolution that is defined as the smallest detectable displacement of an edge from its image acquired in digital from. As the critical feature size of integrated circuit patterns reaches below 0.35 micrometers, the edge resolution is required to be less than 0.01 micrometers. This requirement is so stringent that fundamental behaviors of digital optical imaging need to be explored especially for the precision coordinate metrology. Our investigation reveals that the edge resolution shows quasi-random characteristics, not being simply deduced from relevant opto-electronic system parameters. Hence, a stochastic upper bound analysis is made to come up with the worst edge resolution that can statistically well predict actual indeterminate edge resolutions obtained with high magnification microscope objectives.

  • PDF

A New Method for Measuring Refractive Index with a Laser Frequency-shifted Feedback Confocal Microscope

  • Zhou, Borui;Wang, Zihan;Shen, Xueju
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • In this paper, a new method is presented to measure the refractive index of single plain glass or multilayered materials, based on a laser frequency-shifted confocal feedback microscope. Combining the laser frequency-shifted feedback technique and the confocal effect, the method can attain high axial-positioning accuracy, stability and sensitivity. Measurements of different samples are given, including N-BK7 glass, Silica plain glass, and a microfluidic chip with four layers. The results for N-BK7 glass and Silica plain glass show that the measurement uncertainty in the refractive index is better than 0.001. Meanwhile, the feasibility of this method for multilayered materials is tested. Compared to conventional methods, this system is more compact and has less difficulty in sample processing, and thus is promising for applications in the area of refractive-index measurement.

Sensing System for Measuring Deflection of Microcantilever (마이크로 캔틸레버 굽힘 측정을 위한 센싱시스템)

  • Kim, Hyun-Chul;Lee, Sang-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.961-964
    • /
    • 2012
  • This paper presents a sensing system to measure the deflection of a microcantilever in an atomic force microscope. In general, the optical lever method and interferometry are used for the sensing system; however, their size and cost leaves considerable room for improvement. Therefore, we used an optical pickup head whose operating principle is based on the astigmatism of the commercial optical disk drives. The developed sensing system was applied to a laboratory atomic force microscope, and satisfactory results were obtained.