• Title/Summary/Keyword: Optical MEMS

Search Result 163, Processing Time 0.017 seconds

Advances in MEMS Based Planar VOA

  • Lee, Cheng-Kuo;Huang, RueyShing
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.183-195
    • /
    • 2007
  • MEMS technology is proven to be an enabling technology to realize many components for optical networking applications. Due to its widespread applications, VOA has been one of the most attractive MEMS based key devices in optical communication market. Micromachined shutters and refractive mirrors on top of silicon substrate or on the device layer of SOI (Silicon-on-insulator) substrate are the approaches trapped tremendous research activities, because such approaches enable easier alignment and assembly works. These groups of devices are known as the planar VOAs, or two-dimensional (2-D) VOAs. In this review article, we conduct the comprehensively literature survey with respect to MEMS based planar VOA devices. Apparently MEMS VOA technology is still evolving into a mature technology. MEMS VOA technology is not only the cornerstone to support the future optical communication technology, but the best example for understanding the evolution of optical MEMS technology.

Micromachining Technologies and its application to MEMS Optical Switch (마이크로머시닝 기술과 MEMS 광스위치 응용)

  • 이종현
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.103-107
    • /
    • 2002
  • With the great demand for WDM (Wavelength Division Multiplexing) optical communications, optical switches are expected to become one of the dominant components in future networks. Conventional mechanical switches suffer from poor reliability and large size; however, many micromachined optical switches with moving mirrors have been proposed for high scale OXC (Optical Crossconnect) or ADM (Add/Drop Multiplex) because of the low power consumption and high reliability of these switches. In this paper, we introduce the technological trends of optical switches using MEMS, related micromachining technologies and their characteristics.

Optical components assembly by AIO bonding method (AIO 에 의한 Glass 광학부품 Bonding)

  • Potapov, S.;Ku, Janam;Yoon, Eungyeoul;Chang, Donghoon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.254-255
    • /
    • 2002
  • Optical elements such as small glass lenses or optical fibers can be permanently bonded to substrates using Al inter-layer by applying Pressure and heating. As an example aspherical lens was bonded on a silicon V-groove. The bonding has high shear strength and good thermal cycling stability.

  • PDF

Development of Optical Switch by using MEMS (MEMS를 이용한 Optical Switch의 개발)

  • Choi, Hyung
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.154-155
    • /
    • 2000
  • Optical switches using MEMS(Micro Electro Mechanical Systems) process have been widely developed since conventional optical switches cannot meet the requirements of new systems. $N_2$ type micro-mirror switches are easy to control, have simple optical systems but have difficulties in expanding the ports. Micromirrors of 2N type switches must be tilted at various angles and have relatively complicated optical systems but have advantage in expanding ports. Another type of optical switch using MEMS process is micro-waveguide type. It is reliable than other types since it has no moving parts.

  • PDF

MEMS Technology for Biophotonic Applications (바이오포토닉스응용을 위한 MEMS 미세광학소자의 개발)

  • Jeong, Gi-Hun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.387-388
    • /
    • 2009
  • Biophotonics is an emerging area in a fusion of biology and photonics, especially in advanced bioimaging, optical biosensors, photomodulation, and biochip optical read-out, and optical manipulation. This emerging area also creates many opportunities for interdisciplinary study of biology and photonics. Micro-Electro-Mechanical-System(MEMS) is an attractive technology in miniaturizing sensors and actuactors. For last decade, it has contributed to the development for active and passive small and integrated optical components in optical communication. Recently, this technology is also merging into biology for high sensitive biosensing and high resolution and fast bioimaging in small form factor. In this talk, some key advantages of small optical components and recent biophotonic MEMS achievement will be discussed for miniaturized advanced biophotonic systems.

  • PDF

Technical Overview of Optical MEMS in Information and Telecommunication (정보통신 광 MEMS 기술의 동향분석)

  • Pack, M.C.;Han, G.P.;Kim, Y.Y.;Sohn, Y.J.;Kim, T.Y.;Cho, K.I.
    • Electronics and Telecommunications Trends
    • /
    • v.16 no.4 s.70
    • /
    • pp.23-40
    • /
    • 2001
  • 광 MEMS(Optical MEMS)는 미세 기계, 전자 및 광학기술이 조합하여 이루어지는 종합적인 기술분야로서 정보통신 핵심부품의 정밀화, 고성능화, 경량화 추세에 의해 그 중요성을 더해가고 있다. 본 논문은 정보통신 기술분야에 적용되고 있는 광 MEMS 기술에 대하여 살펴본 것으로, MEMS 시스템을 구성하고 있는 광학적 구성요소의 기술개발 현황, 신소재 및 새롭게 도출된 아이디어 등에 대하여 최신 연구동향을 중심으로 조사.분석하였다. 정보통신 기술의 발전에 따라 응용분야도 다양해지며 신소재의 출현에 따른 새로운 연구분야가 확대되는 등 광 MEMS 기술의 전반적인 기술추세에 대해 전망하였다.

Searching and Autoalignment Method for Indoor Free-space Optical Communication (실내용 자유 공간 광 통신을 위한 수신단의 위치 탐색 및 자동 링크 정렬 방법)

  • Lee, Kwanyong;Cho, Seung-Rae;Lee, Chang-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.230-236
    • /
    • 2019
  • We propose and demonstrate a searching and autoalignment method for indoor optical wireless communication, using a cost-effective retroreflective sheet and a microelectromechanical system (MEMS) mirror. We use an extremum-seeking method for a single axis and beam steering with a MEMS mirror to maintain a line of sight (LOS) with the optical link. This autoalignment method shows a receiver sensitivity of -31.87 dBm for a bit rate of 2.5 Gb/s over a 7 m communication link.