• Title/Summary/Keyword: Optical Height

Search Result 347, Processing Time 0.023 seconds

Variations of Interface Potential Barrier Height and Leakage Current of (Ba, Sr)$TiO_3$ Thin Films Deposited by Sputtering Process

  • Hwang, Cheol-Seong;Lee, Byoung-Taek
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.95-101
    • /
    • 1996
  • Variations of the leakage current behaviors and interface potential barrier $({\Phi}_B)$ of rf-sputter deposited (Ba, Sr)$TiO_3$ (BST) thin films with thicknesses ranging from 20 nm to 150nm are investigated as a function of the thickness and bias voltages. The top and bottom electrodes are dc-sputter-deposited Pt films. ${\Phi}_B$ critically depends on the BST film deposition temperature, postannealing atmosphere and time after the annealing. The postannealing under $N_2$ atmosphere results in a high interface potential barrier height and low leakage current. Maintaining the BST capacitor in air for a long time reduces the ${\Phi}_B$ from about 2.4 eV to 1.6 eV due to the oxidation. ${\Phi}_B$ is not so dependent on the film thickness in this experimental range. The leakage conduction mechanism is very dependent on the BST film thickness; the 20 nm thick film shows tunneling current, 30 and 40 nm thick films show Shottky emission current.

  • PDF

Study on Error Reduction in Dual Wavelength Digital Holography Using Modified Fine Map (수정된 화인 맵을 이용한 2-파장 홀로그래피와 잡음 제거 연구)

  • Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.129-133
    • /
    • 2011
  • Dual-wavelength holography has better axial range than single-wavelength holography, allowing unambiguous phase imaging but at the expense of increased noise. We have studied error reduction in dual wavelength holography using a modified fine map. The fine map is successful in measurement and has shown error reduction when the height of the object is less than the appled wavelength, but is unstable when the step height is larger than that wavelength. We have modified the fine map and we have found that the modified fine map was successful in measurement and error reduction even though the height of object was larger than the wavelength.

Fabrication of Multi-layered Macroscopic Hydrogel Scaffold Composed of Multiple Components by Precise Control of UV Energy

  • Roh, Donghyeon;Choi, Woongsun;Kim, Junbeom;Yu, Hyun-Yong;Choi, Nakwon;Cho, Il-Joo
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • Hydrogel scaffolds composed of multiple components are promising platform in tissue engineering as a transplantation materials or artificial organs. Here, we present a new fabrication method for implementing multi-layered macroscopic hydrogel scaffold composed of multiple components by controlling height of hydrogel layer through precise control of ultraviolet (UV) energy density. Through the repetition of the photolithography process with energy control, we can form several layers of hydrogel with different height. We characterized UV energy-dependent profiles with single-layered PEGDA posts photocrosslinked by the modular methodology and examined the optical effect on the fabrication of multi-layered, macroscopic hydrogel structure. Finally, we successfully demonstrated the potential applicability of our approach by fabricating various macroscopic hydrogel constructs composed of multiple hydrogel layers.

Development of an Educational System and Real Time Nonlinear Control (II) (교육용 시스템 개발과 실시간 비선형 제어(II))

  • 박성욱
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.571-576
    • /
    • 2002
  • This paper is to develop jumping ring system with three sensor arrays and to control levitated ring using dynamic neural mode. Placing an aluminum ring on the core and switching on an AC source causes the ring to jump in the air due to induced currents. The educational system is composed of 40th optical sensor array, encode circuit, 89C51 microprocessor and control board. The control board consists of power IC, and phase controller. Real time process is present to obtain a height of levitated ring for three different sensor arrays. Based on the educational system and the proposed dynamic neural mode, the height of levitation of the ring is controlled by reference signals. This paper focuses on real system controls using the dynamic neural mode with on line learning algorithm.

Measurement of Infinitesimal Delaminaton Thickness by Echo Amplitude of Ultrasonic Wave (초음파의 에코 높이를 이용한 미소(微小) 박리(剝離) 두께 측정에 관한 연구)

  • Han, E.K.;Jang, K.Y.;Hwang, B.I.;Lee, B.S.;Park, I.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 1993
  • If the infinitesimal delamination exists and the two waves can hardly be distinguished from each other on account of being much closer, we cannot measure the thickness of delamination by the time difference method. On this study, we calculated the thickness of infinitesimal delamination model by means of measuring echo height due to the deflection of material particles and utilized Newton Ring for optical measurement as a delamination model. From the result of Newton Ring expressed in the delamination model, we can calculate the infinitesimal delamination thickness up to $0.2{\sim}0.3{\mu}m$ due to the difference of acoustic impedance by the ratio of the echo height to the total reflection.

  • PDF

Soot Size and Concentration Measurements in a Laminar Diffusion Flame Using a Lignt Scattering/Extinction Technique (광산란 소멸법을 이용한 층류확산화염내에 매연입자의 크기 및 농도 측정)

  • 하영철;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1796-1804
    • /
    • 1992
  • Profiles of soot volume fraction, average diameter and particle number density have been measured using a light scattering and extinction technique in a coannular propane diffusion flame at atmosperic pressure. Temperature profiles were also obtained using a thermocouple technique. Measurements show that soot is first observed to form low in the flame in an annular region inside the main reaction zone. At higher locations this annular region widen until entire flame is observed to contain particles. Soot volume fraction and particle diameter profiles peak some 1mm on the fuel side of peak temperature and increase with height to oxidation region. Number density of the flame core drop steeply from formation region to growth region and relatively invariant to some height and decay out at flame tip.

A New Approach to Design Method of the Solar Compound Parabolic Concentrator with Tubular Absorber (태양열집속집열기의 설계 방법에 관한 연구)

  • Kim, Seok-Jong;Lim, Sang-Hoon
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.33-38
    • /
    • 2002
  • The intermediate range of temperatures($100{\sim}300^{\circ}C$) which can be achieved with CPCs(Compound Parabolic Concentrators) without tracking device provides both economic and thermal advantages for solar collector design. The present paper summarizes critical design considerations for CPC with cylindrical absorber and its optical performance using ray tracing program. Concentration ratios vary as acceptance half angle, ratio of reflector height to aperture width and ratio of reflector area to aperture area. This effects showed that the concentration ratio was increased as acceptance angle but optimum ratio of reflector height to aperture width existed at critical value. As a result of ray tracing, solar ray losses was maximized at acceptance half angle and this problem was solved by increasing absorber tube diameter. The concentrating flux distribution on the absorber surface was uniform but peak flux existed.

Analysis of Laser Control Effects for Direct Metal Deposition Process

  • Choi Joo-Hyun;Chang Yoon-Sang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1680-1690
    • /
    • 2006
  • As a promising and novel manufacturing technology, laser aided direct metal deposition (DMD) process produces near-net-shape functional metal parts directly from 3-D CAD models by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using two sets of optical height sensors is designed for monitoring the melt-pool and real-time control of deposition dimension. With the feedback height control system, the dimensions of part can be controlled within designed tolerance maintaining real time control of each layer thickness. Clad nugget shapes reveal that the feedback control can affect the nugget size and morphology of microstructure. The pore/void level can be controlled by utilizing pulsed-mode laser and proper design of deposition tool-path. With the present configuration of the control system, it is believed that more innovation of the DMD process is possible to the deposition of layers in 3-D slice.

A Study on Aspheric Optics European LED Streetlights Type for the Prevention of Light Pollution (빛 공해 방지를 위한 유럽형 LED 가로등용 비구면 광학계에 관한 연구)

  • Lee, Shi-Woo;Lee, Chang-Soo;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.429-436
    • /
    • 2013
  • In this study, we researched a pendant-type aspherical optical system, which could be applied to street lighting and security lighting in Europe. The goal of this research was eco-friendly artificial lighting that could be used for the one-to-one replacement of ordinary lighting. LED lighting was miniaturized by using one COB LED Module and one aspherical optical system, which could control the luminosity of the LED. Through the aspherical optical system, the light distribution angle could be controlled in a range of $140^{\circ}$ for the X-axis and $40^{\circ}$ for the Y-axis. This means that this optical system is appropriate for catenary-type lighting, which is widely used in Europe on both narrow and broad roads. The performance was determined using a lighting simulation program. This lighting system simulation showed that road rates M4 and M5 could be satisfied, with the condition of a 13-m height and 50-m distance (U0 and TI). The simulation program estimated that light pollution, which disturbs sleep, could beeliminated in the European streetlight case. Determining methods for the light distribution control, performance, and optimal lighting setup conditions is very important to prevent light pollution. Moreover, the initial step of developing the lighting system design and post management will require an effort with much analysis.

MONTE-CARLO RADIATIVE TRANSFER MODEL OF THE DIFFUSE GALACTIC LIGHT

  • Seon, Kwang-Il
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.57-66
    • /
    • 2015
  • Monte-Carlo radiative models of the diffuse Galactic light (DGL) in our Galaxy are calculated using the dust radiative transfer code MoCafe, which is three-dimensional and takes full account of multiple scattering. The code is recently updated to use a fast voxel traversal algorithm, which has dramatically increased the computing speed. The radiative transfer models are calculated with the generally accepted dust scale-height of 0.1 kpc. The stellar scale-heights are assumed to be 0.1 or 0.35 kpc, appropriate for far-ultraviolet (FUV) and optical wavelengths, respectively. The face-on optical depth, measured perpendicular to the Galactic plane, is also varied from 0.2 to 0.6, suitable to the optical to FUV wavelengths, respectively. We find that the DGL at high Galactic latitudes is mostly due to backward or large-angle scattering of starlight originating from the local stars within a radial distance of r < 0.5 kpc from the Earth. On the other hand, the DGL measured in the Galactic plane is mostly due to stars at a distance range that corresponds to an optical depth of $${\sim_\sim}$$ 1 measured from the Earth. Therefore, the low-latitude DGL at the FUV wavelength band would be mostly caused by the stars located at a distance of $r{\leq}0.5$ kpc and the optical DGL near the Galactic plane mainly originates from stars within a distance range of $1{\leq}r{\leq}2kpc$. We also calculate the radiative transfer models in a clumpy two-phase medium. The clumpy two-phase models provide lower intensities at high Galactic latitudes compared to the uniform density models, because of the lower effective optical depth in clumpy media. However, no significant difference in the intensity at the Galactic plane is found.