• Title/Summary/Keyword: Optical Flow Sensor

Search Result 85, Processing Time 0.02 seconds

A Study on the Environment Recognition System of Biped Robot for Stable Walking (안정적 보행을 위한 이족 로봇의 환경 인식 시스템 연구)

  • Song, Hee-Jun;Lee, Seon-Gu;Kang, Tae-Gu;Kim, Dong-Won;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1977-1978
    • /
    • 2006
  • This paper discusses the method of vision based sensor fusion system for biped robot walking. Most researches on biped walking robot have mostly focused on walking algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since biped walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, systems for environment recognition and tele-operation have been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. For carrying out certain tasks, an object tracking system using modified optical flow algorithm and obstacle recognition system using enhanced template matching and hierarchical support vector machine algorithm by wireless vision camera are implemented with sensor fusion system using other sensors installed in a biped walking robot. Also systems for robot manipulating and communication with user have been developed for robot.

  • PDF

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

A Study on the Noise Emission Characteristics of Turbo Axial Flow Fan by Experimental Method (터보형송풍기의 소음 방사특성에 관한 실험적 연구)

  • 김동규;백종진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.271-277
    • /
    • 2003
  • Recently as the environmental noise getting influential social problem, it is the fact that the demand on noise reduction increases with the advance of the standard of living. Therefore increasing the interest on the noise in common, it is eagerly demanded that the endeavour for reducing the noise of the rotating machinery, especially the machinery related a flowing including the household electric products, which is pointed out the primary noise source in environment. As proceeding study for fan noise, theory of fan noise property is arranged and this control method is shown. Blade passage noise of total noise spectrum. Thus in the aspect of noise reduction, noise source and identification of noise radiation characteristics of axial flow fan are demanded in detail. The sound source is analyzed by using sound pressure and sound intensity. In that time, synchronization of axial flow fan using optical sensor is executed, and to identify the location of exact noise source in the fan profile determination of recording time is proposed. In the rotating of tan, it is explained that the location of noise source exists in and by the directivity, the noise radiation pattern of axial flow fan is determined and the flow of sound is visualized in the figure of contour mapping.

  • PDF

Electrical Properties and Reliability of the Photo-conductive CdS Thin Films for Flexible Opto-electronic Device Applications (유연성 광전도 CdS 박막의 증착조건에 따른 전기적 특성 및 신뢰성 평가 연구)

  • Hur, Sung-Gi;Cho, Hyun-Jin;Park, Kyoung-Woo;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1023-1027
    • /
    • 2009
  • Cadmium sulfide (CdS) thin film for flexible optical device applications were prepared at $H_2/(Ar+H_2)$ flow ratios on polyethersulfon (PES) flexible polymer substrates at room temperature by radio frequency magnetron sputtering technique. The CdS thin films deposited at room temperature showed a (002) preferred orientation and the smooth surface morphologies. Films deposited at a hydrogen flow ratio of 25% exhibited a photo- and dark-sheet resistance of about 50 and $2.7\;{\times}\;10^5\;{\Omega}/square$, respectively. From the result of the bending test, CdS films exhibit a strong adhesion with the PES polymer substrates and the $Al_2O_3$ passivation layer deposited on the CdS films only shows an increase of the resistance of 8.4% after exposure for 120 h in air atmosphere.

Growth behavior on initial layer of ZnO:P layers grown by magnetron sputtering with controlled by $O_2$ partial pressure

  • Kim, Yeong-Lee;An, Cheol-Hyeon;Bae, Yeong-Suk;Kim, Dong-Chan;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.28.1-28.1
    • /
    • 2009
  • The superior properties of ZnO such as high exciton binding energy, high thermal and chemical stability, low growth temperature and possibility of wet etching process in ZnO have great interest for applications ranging from optoelectronics to chemical sensor. Particularly, vertically well-aligned ZnO nanorods on large areas with good optical and structural properties are of special interest for the fabrication of electronic and optical nanodevices. Currently, low-dimensional ZnO is synthesized by metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), thermal evaporation, and sol.gel growth. Recently, our group has been reported about achievement the growth of Ga-doped ZnO nanorods using ZnO seed layer on p-type Si substrate by RF magnetron sputtering system at high rf power and high growth temperature. However, the crystallinity of nanorods deteriorates due to lattice mismatch between nanorods and Si substrate. Also, in the growth of oxide using sputtering, the oxygen flow ratio relative to argon gas flow is an important growth parameter and significantly affects the structural properties. In this study, Phosphorus (P) doped ZnO nanorods were grown on c-sapphire substrates without seed layer by radio frequency magnetron sputtering with various argon/oxygen gas ratios. The layer change films into nanorods with decreasing oxygen partial pressure. The diameter and length of vertically well-aligned on the c-sapphire substrate are in the range of 51-103 nm and about 725 nm, respectively. The photoluminescence spectra of the nanorods are dominated by intense near band-edge emission with weak deep-level emission.

  • PDF

Vision-Based Obstacle Collision Risk Estimation of an Unmanned Surface Vehicle (무인선의 비전기반 장애물 충돌 위험도 평가)

  • Woo, Joohyun;Kim, Nakwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1089-1099
    • /
    • 2015
  • This paper proposes vision-based collision risk estimation method for an unmanned surface vehicle. A robust image-processing algorithm is suggested to detect target obstacles from the vision sensor. Vision-based Target Motion Analysis (TMA) was performed to transform visual information to target motion information. In vision-based TMA, a camera model and optical flow are adopted. Collision risk was calculated by using a fuzzy estimator that uses target motion information and vision information as input variables. To validate the suggested collision risk estimation method, an unmanned surface vehicle experiment was performed.

A Study on Ceiling Light and Guided Line based Moving Detection Estimation Algorithm using Multi-Camera in Factory

  • Kim, Ki Rhyoung;Lee, Kang Hun;Cho, Su Hyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.70-74
    • /
    • 2018
  • In order to ensure the flow of goods available and more flexible, reduce labor costs, many factories and industrial zones around the world are gradually moving to use automated solutions. One of them is to use Automated guided vehicles (AGV). Currently, there are a line tracing method as an AGV operating method, and a method of estimating the current position of the AGV and matching with a factory map and knowing the moving direction of the AGV. In this paper, we propose ceiling Light and guided line based moving direction estimation algorithm using multi-camera on the AGV in smart factory that can operate stable AGV by compensating the disadvantages of existing AGV operation method. The proposed algorithm is able to estimate its position and direction using a general - purpose camera instead of a sensor. Based on this, it can correct its movement error and estimate its own movement path.

Real-time Interactive Particle-art with Human Motion Based on Computer Vision Techniques (컴퓨터 비전 기술을 활용한 관객의 움직임과 상호작용이 가능한 실시간 파티클 아트)

  • Jo, Ik Hyun;Park, Geo Tae;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • We present a real-time interactive particle-art with human motion based on computer vision techniques. We used computer vision techniques to reduce the number of equipments that required for media art appreciations. We analyze pros and cons of various computer vision methods that can adapted to interactive digital media art. In our system, background subtraction is applied to search an audience. The audience image is changed into particles with grid cells. Optical flow is used to detect the motion of the audience and create particle effects. Also we define a virtual button for interaction. This paper introduces a series of computer vision modules to build the interactive digital media art contents which can be easily configurated with a camera sensor.

SLAM with Visually Salient Line Features in Indoor Hallway Environments (실내 복도 환경에서 선분 특징점을 이용한 비전 기반의 지도 작성 및 위치 인식)

  • An, Su-Yong;Kang, Jeong-Gwan;Lee, Lae-Kyeong;Oh, Se-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.40-47
    • /
    • 2010
  • This paper presents a simultaneous localization and mapping (SLAM) of an indoor hallway environment using Rao-Blackwellized particle filter (RBPF) along with a line segment as a landmark. Based on the fact that fluent line features can be extracted around the ceiling and side walls of hallway using vision sensor, a horizontal line segment is extracted from an edge image using Hough transform and is also tracked continuously by an optical flow method. A successive observation of a line segment gives initial state of the line in 3D space. For data association, registered feature and observed feature are matched in image space through a degree of overlap, an orientation of line, and a distance between two lines. Experiments show that a compact environmental map can be constructed with small number of horizontal line features in real-time.

Control of Robot Manipulators Using LQG Visual Tracking Cotroller (LQG 시각추종제어기를 이용한 로봇매니퓰레이터의 제어)

  • Lim, Tai-Hun;Jun, Hyang-Sig;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2995-2997
    • /
    • 1999
  • Recently, real-time visual tracking control for a robot manipulator is performed by using a vision feedback sensor information. In this paper, the optical flow is computed based on the eye-in-hand robot configuration. The image jacobian is employed to calculate the rotation and translation velocity of a 3D moving object. LQG visual controller generates the real-time visual trajectory. In order to improving the visual tracking performance. VSC controller is employed to control the robot manipulator. Simulation results show a better visual tracking performance than other method.

  • PDF