• Title/Summary/Keyword: Opportunistic Scheduling

Search Result 45, Processing Time 0.027 seconds

Hybrid Scheduling in Millimeter Wave Full-Duplex Systems (밀리미터파 전 이중 시스템에서의 혼성 스케줄링)

  • Mai, Vien V.;Kim, Juyeop;Choi, Sang Won;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.52-57
    • /
    • 2016
  • We introduce a hybrid scheduling in a multi-path poor scattering full-duplex (FD) system, which consists of one multi-antenna FD base station and a large number of single-antenna half-duplex mobile stations. Our hybrid scheduling utilizes partial channel state information at the transmitter. In particular, unlike the conventional scheduling method using opportunistic transmission for both uplink and downlink, the proposed scheme combines a random transmit beamforming for downlink and a zero forcing beamforming for uplink. As our main result, via computer simulations, it is shown that the proposed scheme has a superior sum-rate performance than that of the conventional scheduling method beyond a certain signal-to-noise ratio regime.

A New Joint Packet Scheduling/Admission Control Framework for Multi-Service Wireless Networks

  • Long Fei;Feng Gang;Tang Junhua
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.408-416
    • /
    • 2005
  • Quality of service (QoS) provision is an important and indispensable function for multi-service wireless networks. In this paper, we present a new scheduling/admission control frame­work, including an efficient rate-guaranteed opportunistic scheduling (ROS) scheme and a coordinated admission control (ROS­CAC) policy to support statistic QoS guarantee in multi-service wireless networks. Based on our proposed mathematical model, we derive the probability distribution function (PDF) of queue length under ROS and deduce the packet loss rate (PLR) for individual flows. The new admission control policy makes admission decision for a new incoming flow to ensure that the PLR requirements of all flows (including the new flow) are satisfied. The numerical results based on ns-2 simulations demonstrate the effectiveness of the new joint packet scheduling/admission control framework.

Efficient Scheduling Method based Cross-Layer on Mobile Communication Multimedia Environments (이동통신 멀티미디어 환경에서의 효율적인 크로스레이어 기반의 스케줄링 기법)

  • Kim, Joo-Seok;Kim, Hyung-Jung;Jo, Gweon-Do;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.10
    • /
    • pp.1-9
    • /
    • 2007
  • Allocation and management of the resource is very important in wireless networks because the wireless resource is limited. Therefore, the importance of designing cross layer, which adapt between different layers, is on the rise. In this paper, we investigate the scheduling techniques of the cross layer. This paper researches conventional scheduling methods and proposes the complementary scheduling method. On multimedia environment, the scheduling method must be applied variably because of offering variable services. Therefore, this paper proposes the new scheduling method according to the variable services. The proposed method shows that utility efficiency of the wireless resource more excellent than the conventional method through the simulations.

On Opportunistic Beamforming with Multiple-User Selection (오퍼튜니스틱 다중 빔 형성 시스템의 사용자 선택에 따른 성능 향상)

  • Ku, Mi-Hyeon;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.130-138
    • /
    • 2008
  • In this paper, we propose a user selection method to maximize the sum-rate of downlink over opportunistic beamforming. The throughput of an opportunistic beamforming with non-uniformly distributed or a small number of users can decrease. In order to improve the throughput, we propose a scheduling method that does not use SINR or SNR but uses the effective channel gain of each user obtained from the SINR or SNR feedback. The proposed method makes it possible to select users flexibly according to the distribution of users. In numerical results, we show that the proposed methods improve the average sum-rate about 60% when users are distributed non uniformly.

A fuzzy criteria weighting for adaptive FMS scheduling

  • Lee, Kikwang;Yoon, Wan-Chul;Baek, Dong-Hyun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.131-134
    • /
    • 1996
  • Application of machine learning to scheduling problems has focused on improving system performance based on opportunistic selection among multitudes of simple rules. This study proposes a new method of learning scheduling rules, which first establishes qualitatively meaningful criteria and quantitatively optimizes the use of them, a similar way as human scheduler accumulate their expertise. The weighting of these criteria is trained in response to the system states through simulation. To mimic human quantitative feelings, distributed fuzzy sets are used for assessing the system state. The proposed method was applied to job dispatching in a simulated FMS environment. The job-dispatching criteria used were the length of the processing time of a job and the situation of the next workstation. The results show that the proposed method can develop efficient and robust scheduling strategies, which can also provide understandable and usable know-hows to the human scheduler.

  • PDF

Feedback Reduction of Channel Quality Information for Multiuser MIMO Systems (다중사용자 다중입출력 시스템을 위한 채널품질 되돌림의 정보량 감쇄 기법)

  • Cho Myeon-Gyun;Kim Young-Ju;Hong Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.798-803
    • /
    • 2006
  • An opportunistic scheduling is adopted to improve the capacity of the system by exploiting the multiuser diversity of multiuser MIMO(MU-MIMO) systems. However it requires the large amount of feedback carrying the channel quality information(CQI) of each user to the transmitter, The considered per user unitary and rate control(PU2RC) needs to feedback the preferred preceding index and its CQIs, and it has a defect in scheduling the streams for the grouped user. In order to overcome these drawbacks, a novel feedback reduction scheme is proposed in this paper. It employs transmitter controlled preceding and opportunistic feedback(TCP-OFB). The simulation results demonstrate that TCP-OFB shows comparable performance to PU2RC while it only requires far reduced feedback load.

Scheduling and Power Control Framework for Ad hoc Wireless Networks

  • Casaquite, Reizel;Yoon, Myung-Hyun;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.745-753
    • /
    • 2007
  • The wireless medium is known to be time-varying which could affect and result to a poor network's performance. As a solution, an opportunistic scheduling and power control algorithm based on IEEE 802.11 MAC protocol is proposed in this paper. The algorithm opportunistically exploits the channel condition for better network performance. Convex optimization problems were also formulated i.e. the overall transmission power of the system is minimized and the "net-utility" of he system is maximized. We have proven that an optimal transmission power vector may exist, satisfying the maximum power and SINR constraints at all receivers, thereby minimizing overall transmission power and maximizing net-utility of the system.

  • PDF

Survey on Physical Layer Security in Downlink Networks

  • Abbas, Mohammed Adil;Hong, Jun-Pyo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • In this paper, we discuss physical layer security techniques in downlink networks, including eavesdroppers. The main objective of using physical layer security is delivering a perfectly secure message from a transmitter to an intended receiver in the presence of passive or active eavesdroppers who are trying to wiretap the information or disturb the network stability. In downlink networks, based on the random feature of channels to terminals, opportunistic user scheduling can be exploited as an additional tool for enhancing physical layer security. We introduce user scheduling strategies and discuss the corresponding performances according to different levels of channel state information (CSI) at the base station (BS). We show that the availability of CSI of eavesdroppers significantly affects not only the beamforming strategy but also the user scheduling. Eventually, we provide intuitive information on the effect of CSI on the secrecy performance by considering three scenarios: perfect, imperfect, and absence of eavesdropper's CSI at the BS.

Opportunistic Precoding based on Adaptive Perturbation for MIMO Systems (다중입출력 시스템에서 적응형 섭동을 이용한 기회적 프리코딩)

  • Nam, Tae-Hwan;An, Sun-hoe;Lee, Kyungchun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1638-1643
    • /
    • 2019
  • In this paper, we propose an adaptive-perturbation-aided opportunistic precoding (APOP) scheme for multiple-input multiple-output (MIMO) systems. To update a precoding matrix in MIMO systems, the proposed algorithm produces a random perturbation in each time slot. Then the additional adaptive perturbation is also applied, which depends on the reports of achievable data-rates from users. If the prior random perturbation increased the data rate, the adaptive perturbation is set to be the same as the prior random perturbation, otherwise the negative value of the prior random perturbation is applied for adaptive perturbation. Furthermore, to enhance the achievable data rates, the information on the stored precoding matrices in the memory as well as the currently generated precoding matrix is used for scheduling. Simulation results show that compared to conventional opportunistic precoding schemes, higher data rates are achieved by the proposed APOP scheme, especially when there are a relatively small number of users.

On the Multiuser Diversity in SIMO Interfering Multiple Access Channels: Distributed User Scheduling Framework

  • Shin, Won-Yong;Park, Dohyung;Jung, Bang Chul
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • Due to the difficulty of coordination in the cellular uplink, it is a practical challenge how to achieve the optimal throughput scaling with distributed scheduling. In this paper, we propose a distributed and opportunistic user scheduling (DOUS) that achieves the optimal throughput scaling in a single-input multiple-output interfering multiple-access channel, i.e., a multi-cell uplink network, with M antennas at each base station (BS) and N users in a cell. In a distributed fashion, each BS adopts M random receive beamforming vectors and then selects M users such that both sufficiently large desired signal power and sufficiently small generating interference are guaranteed. As a main result, it is proved that full multiuser diversity gain can be achieved in each cell when a sufficiently large number of users exist. Numerical evaluation confirms that in a practical setting of the multi-cell network, the proposed DOUS outperforms the existing distributed user scheduling algorithms in terms of sum-rate.