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Abstract

Application of machine learning to scheduling
problems has focused on improving system
performance based on opportunistic selection among
multitudes of simple rules. This study proposes a
new method of learning scheduling rules, which first
establishes qualitatively meaningful criteria and
quantitatively optimizes the use of them, a similar
way as human scheduler accumulate their expertise.
The weighting of these criteria is trained in response
to the system states through simulation. To mimic
human quantitative feelings, distributed fuzzy sets
are used for assessing the system state. The proposed
method was applied to job dispatching in a simulated
FMS environment. The job-dispatching criteria used
were the length of the processing time of a job and
the situation of the next workstation. The results
show that the proposed method can develop efficient
and robust scheduling strategies, which can also
provide understandable and usable know-hows to the
human scheduler.

1. Introduction

Optimizing production scheduling is one of the
most important means to enhance productivity of
modern manufacturing industries. Heuristic rules have
often been adopted for their simplicity and
understandability.

Blackstone et al. [2] showed that, although no
rule can always be the best in all the states of floor,
some rules tend to perform consistently better than
others in certain situations. Based on this idea,
opportunistic strategies which dynamically select the
most suitable rule considering the current state of
the system were devised [3], [5]-[7]. To use this
approach, one should wisely select or devise several
attributes which properly represent the system states.
This approach also requires some evaluation methods
to determine the best rule at a given state. Simulation
has most often been adopted for learning the situational
behavior for its ability to use past field data in that a

great number of trials and observations are possible
in a short time.

Another important source of knowledge about
the effectiveness of rules at different system states is
the human expertise. Extracting such human expertise
is not easy since much of its quantitative part is
only implicit or 'subconscious’. Also, in very complex
modern manufacturing environments, the human
expertise may be hampered by low repetition rate of
same states and noisy feedback of decisions previously
made. For this, some researchers doubt the quality
of human expertise in scheduling problems [1]. Thus
the quantitative knowledge may better be collected
and analyzed by a computer provided that a sound
simulation model is available.

This study proposes a new method of learning
that is similar to the way in which human schedulers
presumably accumulate their expertise. Decision
criteria that are qualitatively meaningful are first
devised and the use of the criteria is then quantitatively
optimized through learning with simulation. The
quantitative use of the criteria can be implemented
by adjusting the weights of those criteria according
to the assessed situation. Also the applicability of a
weight set can be quantitatively assessed by comparing
the current value set of the state variables with that
of the learned states.

This strategy was evaluated by applying to the
optimization of job dispatching in a simulated FMS.
Four situational variables and two decision criteria
were used in this example. We used fuzzy set theory
in integrating the state variables to assess the
situations. The results showed that the proposed
approach is consistently more effective than
commonly used heuristics.

In chapter 2 the proposed learning scheme is
described. Chapter 3 presents the application of this
method to an FMS and discusses the results.

2. The learning and decision-making scheme

Our learning scheme mimics the way in which
human schedulers accumulate their expertise, i.e.,
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establishing some semantically meaningful criteria
and quantitatively optimizing the use of them. In
dealing with the criteria we use fuzzy set theory
aiming at the potential benefit of robustness and
smoothness. Using fuzzy number instead of crisp
number used in most production rules is a widely
accepted alternative to cope with the vulnerability to
changes in system situation. To assure both the
smoothness and sensitivity, we assign multiple fuzzy
numbers to instances of system state variables [4).

The learning is first prepared by an initialization
step in which the basic characteristics of the
manufacturing system is obtained through simulation.
This information is later used to scale and fuzzify
the numerical values of the system state variables
for evaluating the current state of system. Fig. 1
shows the overall architecture of our learning and
decision-making scheme.
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Fig. 1 The intelligent scheduling system

2.1. Learning by simulation

2.1.1. Distributed fuzzy representation of state
variables

To enhance classification power in fuzzy subspaces
for effective learning, using multiple fuzzy numbers
simultaneously from coarse numbers to fine ones is
proposed by Ishibuchi et al. [4].

Suppose that a set of fuzzy numbers { Af, AY,
-, AKX} is used for both of the two axes X, and X,
in the pattern space where K is the largest fuzzy
number in the set.

In this case, an ordinary fuzzy rule can be
represented as follows:

If x,is AS and Xx,is Af then - i, j=1,
2, -+, K. (@))]

A distributed fuzzy rule is defined with regard to
different values of K simultaneously. If it is 3 and
S, a distributed fuzzy rule is presented as follows:

If x,is AX and Xx,is A] then -, i, j=1,
2, -, K;K=35. 2

2.1.2 The Construction of rule base
Suppose that the training data consist of the

state vectors and the performance of all possible
decisions. If the state vector is characterized by m
attributes, it is der}oted by x p=(x 1prXzpaee X mp), p=12,
. ,n, where n is the data size. When there exist
possible decisions, a performance value of decision
D,, t=12,..T at the state X, can be denoted by
PVy . Ifx, is A, x,, is Af, .., x,,, is A then
x, is said to have a value of Aj.,.
We construct rule base which contains the
following fuzzy if-then rules with grade of certainty
(GC) : If x, is Aj, then use D, with GC =

U‘...V
GC(D,1Af.).
K

the grade

of certainty (GC) of each decision D, is calculated
by the following procedure.
Notations

PV"P .

max °

If a given state X, has a value of A

maximum performance value by the best
decision at state X ,
vap .

2 : minimum performance value by the worst
decision at state X,

1 (x): membership function which defines fuzzy
set A¥ assuming the state space is indexed
by K fuzzy numbers { AF, AY, -, AS )

(i) Let us assume that a smaller performance

value represents a better performance. The degree of
effectiveness( DE,’;" ) of each decision D, at state x,,

is calculated as follows :

o PVE =PV
o =———————, where t=1,2,---, T (3)
* PV - PV,

(ii) The cumulative score of decision D, in each
state A, is calculated as follows :

ﬂ(Dr l All](v) = zuiK(xlp)u'jK(XZp)‘ o :uf(xmp)DEx,p’
p=1

t=12--T, K=2,38,--L. &)
(iii)) GC(D,1A[,) can now be calculated as

iy

follows :
B, 1AL~ B

GC(D,1Af )=
. ) maxh{ﬂ(DhlAg«».v)}

iy

&)

_ T
where 8 =Y, B(D, 1AL )/ T, 1<GC(D, 1A§ )<1.
t=1

ijv iy

2.2. Making decisions based on the rule base

The procedure for finding the most favorable
decision D, for a pattern x, is as follows :

(i) Calculate forr=1,2, ... , T

Supportl’;. = max,{22~ Y (X H (xg,)

J z
1S (x,,)GC(D, 1AL}

i,j,"’,Z = 192,"'5K; K =2s3""aL- (6)
(ii) Find the decision D" which satisfies
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Support . = max{Supportf). , Supportf). IR Supportl';. }.

M
@ii1) If the support of selected decision D" is
less than a user-defined threshold, the control vector
which showed the best performance in initialization
phase is used.

3. Application of the method to FMS

3.1. System description

The proposed learning and decision making was
implemented in a hypothetical FMS as shown in
Fig. 2. We construct a rule base by learning only
with job mix A, and then apply the rule base to job
mix B and C to verify the robustness of the acquired
rule base. Job mix A, B and C differ from each
others in the proportion of job types.
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Fig. 2 A hypothetical FMS

3.2. Initializing by simulation

The following data are obtained in the initialization
phase used in later learning and decision making.

(1) maximum/minimum/average number of jobs
in the incoming buffer queue of each workstation

(ii) maximum/average sum of operation
processing times of all jobs in the incoming buffer
queue of each workstation

(iii) maximum/average idle time of each
workstation

3.3. Learning by simulation

3.3.1. Distributed fuzzy set

Two sets of fuzzy numbers as shown in Fig. 3
are used to adopt the concept of distributed fuzzy set
mentioned in 3.1.1. Accordingly, the value of state
variables are converted into two sets of fuzzy numbers.

) Wi

Fig. 3 Fuzzy set A®and A’

3.3.2. The structure of training data

(1) Control vector and criteria

The system calculates the priority of job k in
the incoming buffer as follows :

Priority(k) = Weight , X Criterion, (k) + Weight,
X Criterion, (k) (8)

The decision here is to determine the pair of
values of the weights, which will be referred to as
control vector. A larger value means higher priority.

The degree of urgency of subsequent workstation
(DUNQ) and the degree of length of processing time
(DLPT) are selected for the criteria. DUNQ reflects
the potential starvation (the idle time of workstation)
or excessive incoming buffer queue length in the
subsequent workstation. A large value implies
excessive queue and a small one starvation. DLPT is
calculated based on the processing time of each job
in the incoming buffer and a large value indicates
the shorter processing time. The values of DUNQ
and DLPT are normalized to [0, 1]. More detail
calculations are omitted for space.

The elements of a control vector are the two
weights corresponding to DUNQ and DLPT and are
shown in Table 1. A negative value of w, for DLPT
implies that a job with the largest processing time
gets a highest priority. A positive value of w, implies
the opposite.

Table 1. The weight combination

0 025 05 075 0 025 05 075

wy .0.75 -0.5 025 O 0256 05 076 1

11 1 1 a1 o A

(2) State vector X=X ,X,,....X,,)

x, = the maximum degree of LPT (Longest
Processing Time) among all jobs in the input buffer

x, = the maximum degree of urgency of subsequent
w/s calculated for jobs in the incoming buffer

x, = the maximum degree of SPT (Shortest
Processing Time) among all jobs in the incoming
buffer

x, = the degree of incoming buffer queue length

To represent above state by multiple fuzzy
numbers, a distributed fuzzy set AX for x,, x,, x,
and x, are defined as shown in Fig. 2.

(3) Resulting performance PV’

The PVD"” is the resulting mean flow time when

D, isusedas a control vector in state X,

3.3.3. Data collection

In order to get the data for learning during the
simulation in the phase of data collection, whenever
a dispatching decision is required, the sub-simulation
function evaluates the performance of all the control
vectors. During the sub-simulation, if the same state
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as the starting one occurs the control vector which
is under consideration is used, otherwise the one
which showed the best performance in initialization
phase is used as a default control vector.

If there already exists one or more rules learned
for the current system state, the Support of the most
favorable control vector is examined. If it is greater
than a user-defined threshold then the best control
vector is used for the current decision. Otherwise,
data collection procedure is executed for additional
learning.

3.4. Simulation result

The mean flow time till 400 throughput was
used as the evaluation measure. When the simulation
starts, all the machines were idle and their buffers
were all empty. In order to remove the initial bias
and to collect data in the steady state, we discarded
first 1000 observations.

The performance of our learning method was
compared with those of 12 widely used dispatching
rules [8] and 15 fixed control vectors shown in
Table 1.

Table 2 shows the results of the simulation
experiments with the rules which have consistently
better performance than others in [8]. The experiment
was conducted with eight replications per every rule.

Learn] used a rule base which was learned from
the scratch. Learn2 cumulated more learning starting
with the rule base built in Learnl. Learn2 improved
performance over Learnl.

Note that even though the rule bases used in
Learnl and Learn2 are acquired only with job mix
A, they showed good performances in the case of
job mix B and C, too. This implies that our learning
method resulted in robust rules that are effective in
different system states.

Table 2. Simulation result

e | dobmixA [ Jobmikh | dobmizC
MFT_ 54 lmpO) MET od Imp(o) MFT  sd._Impt¥)

FCFS | 2807 4.6 00 | 2490 231 00 | 2652 335 00
SPT | 2765 9.0 15 | 2477 47 05 | 2608 318 16
LPT 2931 125 44 | 2606 230 47 | 2815 248 62

MWKR | 2808 54 00 | 2509 232 -07 | 2691 362 -15

LWNQ | 2760 59 17 | 2485 219 02 | 2659 349 03

Leaml | 2747 65 22 244 247 18 | 2595 316 22

Lean2 | 2679 61 46 1 2442 238 19 | 2548 300 39

* MFT : Mean flow time(minute)
s.d : standard deviation
Imp(%) : Percentage of improvement to FCFS
P! B 1%

4. Conclusions

This study developed a new method of learning
job-dispatching rules that is presumably similar to
the way in which human schedulers accumulate their
expertise. The proposed learning method selects

qualitatively meaningful criteria and quantitatively
optimizes the use of them. The space of system
states was represented with distributed fuzzy numbers
to emulate the robustness and smoothness of human
expertise. The quantitative optimization of the use
of the selected criteria is done by learning the
appropriate weight set for the criteria through
simulation at different system states.

Application results in the hypothetical FMS
showed that the proposed method improved system
performance compared to conventional heuristics.
Furthermore, the learned rule set was found to retain
its effectiveness in different environment created by
different job mix patterns.
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