• Title/Summary/Keyword: Operational Space

Search Result 537, Processing Time 0.032 seconds

Extended Operational Space Formulation for the Kinematics, Dynamics, and Control of the Robot Manipulators with Redundancy (여유자유도 로봇의 기구학, 동역학 및 제어를 위한 확장실공간 해석)

  • 장평훈;박기철;김승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3253-3269
    • /
    • 1994
  • In this paper a new concept, named the Extended Operational Space Formulation, has been proposed for the effective analysis and real-time control of the robot manipulators with kinematic redundancy. The extended operational space consists of operational space and optimal null space. The operational space is used to describe robot end-effector motion; whereas the optimal null space, defined as the target space of the self motion manifold, is used to express the self motion for the secondary tasks. Based upon the proposed formulation, the kinematics, statics, and dynamics of redundant robots have been analyzed, and an efficient control algorithm has been proposed. Using this algorithm, one can optimize a performance measure while tracking a desired end-effector trajectory with a better computational efficiency than the conventional methods. The effective ness of the proposed method has been demonstrated with simulations.

Korea Pathfinder Lunar Orbiter Flight Dynamics Simulation and Rehearsal Results for Its Operational Readiness Checkout

  • Song, Young-Joo;Bae, Jonghee;Hong, SeungBum;Bang, Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.181-194
    • /
    • 2022
  • Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was successfully launched on 4 Aug. from Cape Canaveral Space Force Station using a Space-X Falcon-9 rocket. Flight dynamics (FD) operational readiness was one of the critical parts to be checked before the flight. To demonstrate FD software's readiness and enhance the operator's contingency response capabilities, KPLO FD specialists planned, organized, and conducted four simulations and two rehearsals before the KPLO launch. For the efficiency and integrity of FD simulation and rehearsal, different sets of blind test data were prepared, including the simulated tracking measurements that incorporated dynamical model errors, maneuver execution errors, and other errors associated with a tracking system. This paper presents the simulation and rehearsal results with lessons learned for the KPLO FD operational readiness checkout. As a result, every functionality of FD operation systems is firmly secured based on the operation procedure with an enhancement of contingency operational response capability. After conducting several simulations and rehearsals, KPLO FD specialists were much more confident in the flight teams' ability to overcome the challenges in a realistic flight and FD software's reliability in flying the KPLO. Moreover, the results of this work will provide numerous insights to the FD experts willing to prepare deep space flight operations.

Operational Concept Design and Verification for Airborne SAR System (항공탑재 SAR 시스템 운용개념 설계 및 검증)

  • Lee, Hyon-Ik;Kim, Se-Young;Jeon, Byeong-Tae;Sung, Jin-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.588-595
    • /
    • 2013
  • Airborne SAR system is the imaging Radar system that is loaded on a manned or unmanned aircraft, which is in charge of high quality image acquisition and moving target detection. This paper describes the operational requirements for the Airborne SAR system and suggests the operational concept to satisfy the requirements. To be specific, it describes the interface with airborne system, state definition and transition, operation mode based on mission definition file, fault management, and data storing and transmission concept. Finally, it gives the ground test results to verify the SAR system operational concept.

Motion and force control of robot manipulator (로보트 매니퓰레이터의 운동과 힘 제어)

  • 이남구;박세승;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.174-178
    • /
    • 1991
  • In this paper, we present a unified approach for the control of manipulator motions and active forces based on the operational space formulation. The end-effector dynamic model is used in the development of a control system in which the generalized operational space end-effector forces are selected as the command vector. A "generalized position and force specification matrix" is used for the specification of space of motions and forces in which manipulator is to be controlled. Flexibility in the force sensor, end-effector, and environment are discussed.discussed.

  • PDF

FEYNMAN'S OPERATIONAL CALCULUS APPLIED TO MULTIPLE INTEGRALS

  • Kim, Bong-Jin
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.337-348
    • /
    • 1995
  • In 1987, Johnson and Lapidus introduced the noncommutative operations * and + on Wiener functionals and gave a precise and rigorous interpretation of certain aspects of Feynman's operational calculus for noncommuting operators. They established the operational calculus for certain functionals which involve Legesgue measure. In this paper we establish the operational calculus for the functionals applied to multiple integrals which involve some Borel measures.

  • PDF

ROBUST DESIGN OPTIMIZATION OF RAE2822 AIRFOIL UNDER OPERATIONAL UNCERTAINTY USING METAMODEL (근사모델을 이용한 RAE2822 운용 불확실성 강건최적설계)

  • Bae, H.G.;Kwon, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.60-66
    • /
    • 2010
  • In the view of robust design optimization, RAE2822 airfoil was designed to achieve not only the maximum lift-to-drag ratio but also insensitivity of that. While the RAE2822 is flying at the cruise speed, Mach variation is considered as the operational uncertainty. In order to explore the design space, metamodels were introduced instead of consecutively computing the gradient. Also a metamodel was used to represent the sigma space. Using the metamodel, an optimum value was searched in the view of global optimization.

  • PDF

Design space exploration in aircraft conceptual design phase based on system-of-systems simulation

  • Tian, Yifeng;Liu, Hu;Huang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.624-635
    • /
    • 2015
  • Design space exploration has been much neglected in aircraft conceptual design phase, which often leads to a waste of time and cost in design, manufacture and operation process. It is necessary to explore design space based on operational system-of-systems (SoS) simulation during the early phase for a competitive design. This paper proposes a methodology to analyze aircraft performance parameters in four steps: combination of parameters, object analysis, operational simulation, and key-parameters analysis. Meanwhile, the design space of an unmanned aerial vehicle applied in earthquake search and rescue SoS is explored based on this methodology. The results show that applying SoS simulation into design phase has important reference value for designers on aircraft conceptual design.

Estimation of Earth Outgoing Longwave Radiation from Satellite Observation

  • Oh, Sung-Nam
    • Bulletin of the Korean Space Science Society
    • /
    • 1992.10a
    • /
    • pp.12-12
    • /
    • 1992
  • Results from the Earth Radiation Budget Experiment (ERBE) will help interpret the data from the operational satellite system. However, a major problem exists because a follow-on experiment to ERBE is not planned until the late 1990`s. Meanwhile, it will be necessary to provide OLR estimates from the operational satellite system. Since 1973the outgoing long wave radiation(OLR) data have been obtained by the 10#m window radiance(AVHRR) estimation technique from he observation NOAA operational satellites. However, those data have not been universall if accepted because they are estimated from the radiance in but one narrow spectral regiou. However , this type of technique has not been exploited for use with data from the ]fIRS multispectral radiometer. Since the radiance data measured by HIRS contains more: information on atmospheric variables than the AVHRR, it is a potentially better instrument for operational estimates of the OLR In this study, results from model are better flux estimates than the AVHRR, The technique is then tested by comparing simultalleous AVHRR and HIRS OLR estimations with a radiation model flux calculation froml homogeneous atmospheric scenes at the regions of desert and subtropic ocean.

  • PDF

A Study on Operational Improvements for Reducing Carbon Emissions from Aviation (항공 탄소 배출 감소를 위한 운영 개선 방안 연구)

  • Sung-Mi Kim;Eun-Mi Kim;Sang-Hoon Lim;Ho-Won Hwang
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.119-125
    • /
    • 2023
  • It is necessary to reduce aviation GHG(CO2) emission to ensure aviation sustainable development. Operational improvements may not contribute significantly to carbon reduction but it can sustatially reduce emission in a short term. ICAO has developed GANP and ASBU to optimize operations and countries are making efforts to expand infrastructure and develop technology. The legal barriers to operational improvement are based on the notion of state sovereignty under the Chicago Convention which allows countries to control inefficiencies based on borders or limit or prohibit the passage of aircraft. Chicago Convention does not grant unlimited freedom of air sovereignty and if the concept of state sovereignty is interpreted according to the times it is possible to achieve smooth operational improvement.