• Title/Summary/Keyword: Operation voltage

Search Result 3,665, Processing Time 0.024 seconds

Electron-excitation Temperature with the Relative Optical-spectrumIntensity in an Atmospheric-pressure Ar-plasma Jet

  • Han, Gookhee;Cho, Guangsup
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • An electron-excited temperature ($T_{ex}$) is not determined by the Boltzmann plots only with the spectral data of $4p{\rightarrow}4s$ in an Ar-plasma jet operated with a low frequency of several tens of kHz and the low voltage of a few kV, while $T_{ex}$ can be obtained at least with the presence of a high energy-level transition ($5p{\rightarrow}4s$) in the high-voltage operation of 8 kV. The optical intensities of most spectra that are measured according to the voltage and the measuring position of the plasma column increase or decay exponentially at the same rate as that of the intensity variation; therefore, the excitation temperature is estimated by comparing the relative optical-intensity to that of a high voltage. In the low-voltage range of an Ar-jet operation, the electron-excitation temperature is estimated as being from 0.61 eV to 0.67 eV, and the corresponding radical density of the Ar-4p state is in the order of $10^{10}{\sim}10^{11}cm^{-3}$. The variation of the excitation temperature is almost linear in relation to the operation voltage and the position of the plasma plume, meaning that the variation rates of the electron-excitation temperature are 0.03 eV/kV for the voltage and 0.075 eV/cm along the plasma plume.

Seamless Transfer Method of MPPT for Two-stage Photovoltaic PCS (태양광 발전 시스템의 무순단 MPPT 운전 모드 절체 기법)

  • Park, Jong-Hwa;Jo, Jongmin;An, Hyunsung;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.233-238
    • /
    • 2018
  • This paper proposes a seamless MPPT operation mode transfer method of photovoltaic system. The photovoltaic system consists of a DC-DC boost converter, a DC-Link, and a 3-level neutral point clamp (NPC) type inverter. The PV voltage fluctuates due to the output characteristics of the solar pane1 depending on the irradiation amount and the temperature. The photovoltaic system requires seamless MPPT mode transfer method that the discontinuity does not occur in order to supply the stable power to system without affecting the fluctuation of the PV voltage. MPPT operation is divided into two modes by the voltage reference. Under the condition that the PV voltage is below 650V, the DC-DC boost converter performs MPPT through duty control based on perturb & observe (P&O) method, and the inverter conducts DC-link voltage and grid current controls in synchronous reference frame. On the other hand, when the PV voltage exceeds above 650V, inverter performs MPPT in accordance with the variation of DC-link voltage control while the converter stops operating. Two MPPT operation modes is smoothly transferred through the proposed method that DC-link voltage or grid current commands are appropriately adjusted from the certain criteria. The feasibility of the MPPT operation mode transfer method is verified using a 10kW solar photovoltaic system, experimental results have good performances that the fluctuation of PV current is reduced to 100%.

A Voltage Disturbance Detection Method for Computer Application Lods (컴퓨터 응용 부하들을 위한 전압 외란 검출 방법)

  • 이상훈;최재호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.584-591
    • /
    • 2000
  • Power Quality Compensator(PQC) has been installed to protect the sensitive loads against the voltage disturbances, such as voltage sag and interruption. In general, static switch is used for the purpose of link between utility and PQC. So transfer operation of the static switch play a important part in the PQC. Many studies on the structure and control of PQC have been progressed in active, but these researches have been rarely mentioned about any voltage-disturbances-detection method to start the PQC operation. In this paper, a new voltage-disturbances-detection algorithm for computer application loads using the CBEMA/ITIC curve is proposed for transfer operation of the static switch. The proposed detection algorithm is implemented to get fast detecting time through the comparison of instantaneous 3-phase voltage values transferred to DC values in the synchronous reference frame with the operating reference values. To get the robust characteristics against the noise, a first order digital filter is designed. The magnitude falling and phase delay caused by the filter are compensated through the error normalizing and numerical analysis using transfer function, respectively. Finally, the validity of the proposed algorithm is proved by ACSL simulation and experimental results.

  • PDF

Start-Up Current Control Method for Three-Phase PWM Rectifiers with a Low Initial DC-Link Voltage

  • Gu, Bon-Gwan;Choi, Jun-Hyuk;Jung, In-Soung
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.587-594
    • /
    • 2012
  • When a PWM rectifier has a low DC-link voltage during startup, the output voltage vector cannot be high enough to regulate the input current. This lack of a PWM rectifier output voltage vector can cause an unregulated inrush current when the rectifier operation starts. This paper presents a PWM rectifier start-up current control algorithm for when it starts operation with a lower DC-link voltage than unloaded condition case. To avoid the unregulated inrush current caused by a lack of DC-link voltage, the proposed control scheme regulates the one phase current with one switch chopping and it generates the current command considering the uncontrolled current magnitude information, which is calculated in advance. Simulation and experiment results support the validity of the proposed method.

A New Inverter Topology for High Voltage and High Power Applications (고전압 대용량을 위한 새로운 인버터 토폴로지)

  • 김태훈;최세완;박기원;이왕하
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.80-86
    • /
    • 2003
  • In this paper, a new three-phase voltage-source inverter topology for high voltage and high Power applications is proposed to improve the quality of output voltage waveform. A chain converter which is used as an auxiliary circuit generates a ripple voltage and injects it to the conventional 12-step inverter. Thus, the injection of the ripple voltage results in 36-step operation with a link and 60-step operation with two links. The proposed inverter is compared to the conventional multilevel inverter in the viewpoint of ratings of phase- shifting transformers, switching devices and capacitors employed. The proposed scheme is simple to control capacitor voltages compared to the conventional schems and is cost effective for high voltage and high power application over several tens of MVA. The proposed approach is validated through simulation, and the experimental results are provided from a 2KVA laboratory prototype.

Voltage Sag Assessment Considering the Characteristics of Wind Power (풍력 발전 특성을 고려한 순간전압강하 평가)

  • Song, Young-Won;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1571-1577
    • /
    • 2012
  • This paper presents a method for assessing the voltage sag performance of power system involving wind power generation. Wind power generation is considered as one of the most desirable renewable energy sources. However, wind power generation have uncertain energy output and it is difficult to control the output. The existing methods of voltage sag assessment are not reflected the characteristics of wind power generation. Therefore, in order to more accurately assess the voltage sag performance, the probability of wind power operation is evaluated. In this paper, the probability is determined by combining the wind speed model with the output curve of wind turbine. The probability of wind power operation is reflected as a parameter in voltage sag assessment. The proposed method can provide more accurate results of voltage sag assessment for the case involving the wind power generation.

A study on capacitive transformer (용량성배전변압기에 관한 연구)

  • Sung Won Rhee
    • 전기의세계
    • /
    • v.18 no.2
    • /
    • pp.7-14
    • /
    • 1969
  • From the first customer located right at the substation to the last customer at the end of the line, voltage must be held within close limits, so the voltage regulation is more important than the thermal limit. On a typical distribution system during the peak load period, the voltage drop may be serious enough to cause unsatisfactory operation of home appliances in the residential area, and present many problems to manufacturing industries, where the voltage must be maintained within close limits to insure smooth operation. Among all the factors contributing to voltage drop in the distribution system, the voltage drop in the distribution transformer may account for 30% of this figure. If we can eliminate this factor, the power companies can provide better quality electricity to more customers with the existing distribution facilities, thus saving on initial investment costs. Taking all these problems into consideration, the author undertook the design of a capacitive transformer which would give zero voltage drop at rated load and at 80% lagging power factor while incorporating overload features to withstand 400% overload for at least 100 seconds. The following are the results obtained through design, manufacture and test of an initial experimental transformer built with these specific purposes.

  • PDF

An optimal design guideline for voltage drop of DC distribution system with batteries (예비축전지를 갖는 배전계통 전압강하의 비용최적 설계)

  • Cho, Il-Kwon;Kim, Marn-Go
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.400-402
    • /
    • 1994
  • The voltage drop in distribution path of battery-reserved DC power system can affect the total of battery, cable and electricity costs. To determine an optimum voltage drop in distribution path for minimizing the total cost, battery, cable and electricity costs are represented as a function of the voltage drop, respectively, and are summed up to the total cost. An optimum voltage drop is selected as the value giving the minimum total cost. In this paper, a design technique of optimum voltage drop in distribution path of DC power system is proposed to minimize the total of battery, cable and electricity costs. The design procedure is described and design curve for selecting optimum voltage drop is also presented as a function of distribution distance.

  • PDF

Switching-Level Operation Analysis of MMC-based Back-to-Back Converter for HVDC Application (HVDC 적용을 위한 MMC 기반 Back-to-Back 컨버터의 스위칭레벨 동작분석)

  • Hong, Jung-Won;Jeong, Jong-Kyou;Yoo, Seong-Hwan;Choi, Jong-Yun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1240-1248
    • /
    • 2013
  • This paper describes a switching-level operation analysis of BTB(Back-To-Back) converter for HVDC(high voltage DC) application based on MMC(modular multi-level converter). A switching-level operation analysis for BTB converter is very important to understand the converter operation in detail and check the voltage and current transients in each components. However, the development of switching-level simulation model for the actual size BTB Converter is very difficult because the MMC normally has more than 150 sub-modules for each arm. So, a switching level simulation model for the 11-level MMC-based BTB converter was developed with PSCAD/EMTDC software, which has 12 sub-modules for the positive arm and another 12 sub-modules for the negative arm. The DC-voltage balance algorithm, the circulating-current reduction algorithm, the harmonic reduction algorithm, and the redundancy operation algorithm were included in this simulation model. The developed simulation model can be utilized to analyze the MMC-based BTB converter for HVDC application in switching level and to develop the protection scheme for the MMC-based BTB converter for HVDC application.

A Study on the Optimal Operation of 2010 Summer Peak in Korea Power System (2010년 여름철 전력계통 최적 운영에 관한 연구)

  • Lee, Sung-Moo;Cho, Jong-Man;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1733-1740
    • /
    • 2010
  • KPX(Korea Power Exchange) predicts that summer peak load will be 70,700MW and system overload will be 150% from contingency analysis. This paper presents a method to operate power system at 2010 summer peak. about equipment variation, power system variation, analysis results of voltage stability, and the method to relief overload by comparing 2009 and 2010. Especially, transmission constraints to prevent global contingency in Korea power system and the role of SPS(Special Protection System) to prevent voltage collapse when fault occurs are introduced.