• Title/Summary/Keyword: Operation carbon

Search Result 911, Processing Time 0.029 seconds

Mid-Temperature Operation Characteristics of Commercial Reforming Catalysts: Comparison of Ru-Based and Ni-Based Catalyst (상용 개질촉매의 중온 영역 운전 특성: Ru 촉매와 Ni 촉매 비교)

  • KIM, YOUNGSANG;LEE, KANGHUN;LEE, DONGKEUN;LEE, YOUNGDUK;AHN, KOOKYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Most of the reformer experiments have been conducted only in high-temperature operation conditions above 700℃. However, to design high efficiency solid oxide fuel cell, it is necessary to test actual reaction performance in mid-temperature (550℃) operation areas. In order to study the operation characteristics and performance of commercial reforming catalysts, a reforming performance experiment was conducted on mid-temperature. The catalysts used in this study are Ni-based FCR-4 and Ru-based RuA, RuAL. Experiments were conducted with a Steam-to-carbon ratio of 2.0 to 3.0 under gas hourly space velocity (GHSV) 2,000 to 5,000 hr-1. As a result, RuA and RuAL catalysts showed similar gas composition to the equilibrium regardless of the reforming temperature. However, the FCR-4 catalyst showed a lower hydrogen yield compared to the equilibrium under high GHSV conditions.

An Analysis on the Utilization of STAR (Standard Terminal Arrival Route) and CDO (Continuous Descent Operation) Flight Ratio in the Domestic Airport (국내 표준계기도착절차(STAR)의 활용도 및 연속강하접근 운항 비율 분석)

  • ChoongSub Lee;JuHwan Lee;JangHoon Park;HoJong Baik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.132-144
    • /
    • 2022
  • In response to the recent surge in aviation demand, major airport and aviation authorities continue to make efforts to formulate arrival procedures that take into account efficient aircraft separation, noise and environmental issues related to carbon (CO2) emissions. In order to ensure efficient traffic control and environmental issues, as a result, a new concept Trombone, Point Merge, etc. have been introduced and widely used. However, these new concept incisions are becoming a factor that hinders operational efficiency and stability due to the restricted domestic airspace such as military airspace and excessive constraints of altitude, speed, etc. which do not reflect the concept of continuous descent operation and eventually needs to be modified to make continuous descent operation as feasible as possible. We herewith analyze and propose the way of improving flight safety and efficiency in the arrival operation procedure by supplementary modification which consequently contribute to the aviation industry international competitiveness.

Triode-Type Field Emission Displays with Carbon Nanotube Emitters

  • You, J.H.;Lee, C.G.;Jung, J.E.;Jin, Y.W.;Jo, S.H.;Nam, J.W.;Kim, J.W.;Lee, J.S.;Jang, J.E.;Park, N.S.;Cha, J.C.;Chi, E.J.;Lee, S.J.;Cha, S.N.;Park, Y.J.;Ko, T.Y.;Choi, J.H.;Lee, S.J.;Hwang, S.Y.;Chung, D.S.;Park, S.H.;Kim, J.M.
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.48-53
    • /
    • 2001
  • Carbon nanotube emitters, prepared by screen printing, have demonstrated a great potential towards low-cost, largearea field emission displays. Carbon nanotube paste, essential to the screen printing technology, was formulated to exhibit low threshold electric fields as well as an emission uniformity over a large area. Two different types of triode structures, normal gate and undergate, have been investigated, leading us to the optimal structure designing. These carbon nanotube FEDs demonstrated color separation and high brightness over 300 $cd/m^2$ at a video-speed operation of moving images. Our recent developments are discussed in details.

  • PDF

Technical Review on Risk Assessment Methodology for Carbon Marine Geological Storage Systems (이산화탄소 해양 지중저장 시스템에서의 누출 위해성 평가방법에 관한 기술적 검토)

  • Hwang, Jin-Hwan;Kang, Seong-Gil;Park, Young-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • Carbon Capture and Storage (CCS) technology mitigates the emission amount of carbon dioxide into the atmosphere and can reduce green house effect which causes the climate change. Deep saline aquifer or obsolete oil/gas storage etc. in the marine geological structure are considered as the candidates for the storage. The injection and storage relating technology have been interested in the global society, however the adverse effect caused by leakage from the system failure. Even the safety level of the CCS is very high and there is almost no possibility to leak but, still the risk to marine ecosystem of the high concentrated carbon dioxide exposure is not verified. The present study introduces the system and environmental risk assessment methods. The feature, event and process approach can be a good starting point and we found the some possibility from the fault tree analysis for evaluation. From the FEP analysis, we drove the possible scenario which we need to concentrate on the construction and operation stages.

A Study on Adsorption Characteristics of Natural Organic Matter and Taste & Odor Using Activated Carbon (활성탄 흡착지에서 응집조건에 따른 자연유기물질과 이·취미(Geosmin, 2-MIB) 파과특성에 관한 연구)

  • Kim, Sung-Jin;Hong, Seong-Ho;Shin, Heung-Sup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.91-99
    • /
    • 2007
  • It is well-known that the presence of NOM (natural organic matter) in water has a negative effect on removing taste and odor compounds by activated carbon adsorption. Therefore, various means such as enhanced coagulation are applied to reduce the NOM. The presence of taste & odor compounds in drinking water even parts per trillion, is enough to generate customer dissatisfaction. Therefore, the aim of this study was to evaluate carbon usage rate (CUR) for conventional coagulation (CC) and enhanced coagulation (EC) in order to improve the efficiency of adsorption of taste and odor compounds. Also, Effect of CC and EC on molecular weight fraction and the early stage breakthrough of 2-MIB and Geosmin are evaluated. When the enhanced coagulation was adapted for pretreatment for activated carbon adsorption the operation period could be prolonged by 3.5~4 times. CUR for CC was about 2 times greater than CUR for EC and this means that EC has more adsorption capacity than CC. To analyze effect of EC and CC on breakthrough of 2-MIB quantitatively, adsorbed NOM mass was calculated based on unit mass of activated carbon. In the early stage breakthrough of 2-MIB, total adsorbed NOM was 23.72mg/g for CC and 34.56mg/g for EC. Therefore, it is shown that the early breakthrough term of 2-MIB and Geosmin was improved due to increased adsorbability. The low-molecular-weight NOM (500~2000Da) compounds were the most competitive, participating in direct competition with 2-MIB for adsorption site.

Characterization of Organic Matters Removed by Biological Activated Carbon (생물활성탄처리에서 제거된 유기물 특성)

  • Kim, Woo-Hang;Mitsumasa, Okada
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.671-675
    • /
    • 2007
  • The objective of this study was to clarify the characteristics of the removed micropollutant since the breakthrough of adsorption ability was occurred in biological activated carbon(BAC) process. The removal efficiency of DOC (Dissolved Organic Carbon) was 36 % in the breakthrough of BAC occurred by NOM (Natural Organic Matter). The most of removal DOC was found out the adsorbable and biodegradable DOC (A&BDOC). But it was not clear to remove by any mechanism because A&BDOC have simultaneously the adsorption of activated carbon and biodegradation by microorganism in BAC. The removal of bromophenol was examined with BAC and rapid sand filter, for investigation of DOC removal mechanism in the breakthrough of BAC. In this experiment, BAC filter has been operated for 20 months for the treatment of reservoir water. The BAC filter was already exhausted by NOM. Bromophenol, adsorbable and refractory matter, was completely removed by BAC filter. Therefore, it might be removed by the adsorption in BAC. Adsorption isotherms of bromophenol were compared to two BACs which was preloaded with 500 daltons and 3,000 daltons of NOM. BAC preloaded with 3,000 daltons of NOM was not decreased to the adsorbability of bromophenol but BAC preloaded with 500 daltons of NOM was greatly decreased to it. These result indicated that NOM of low molecular weight can be removed by adsorption after a long period of operation and the breakthrough by NOM in BAC. Therefore, micropollutants might be removed through adsorption by saturated BAC.

Sulphate Reducing Bacteria and Methanogenic Archaea Driving Corrosion of Steel in Deep Anoxic Ground Water

  • Rajala, P.;Raulio, M.;Carpen, L.
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.221-227
    • /
    • 2019
  • During the operation, maintenance and decommissioning of nuclear power plant radioactive contaminated waste is produced. This waste is stored in an underground repository 60-100 meters below the surface. The metallic portion of this waste comprises mostly carbon and stainless steel. A long-term field exposure showed high corrosion rates, general corrosion up to 29 ㎛ a-1 and localized corrosion even higher. High corrosion rate is possible if microbes produce corrosive products, or alter the local microenvironment to favor corrosion. The bacterial and archaeal composition of biofilm formed on the surface of carbon steel was studied using 16S rRNA gene targeting sequencing, followed by phylogenetic analyses of the microbial community. The functional potential of the microbial communities in biofilm was studied by functional gene targeting quantitative PCR. The corrosion rate was calculated from weight loss measurements and the deposits on the surfaces were analyzed with SEM/EDS and XRD. Our results demonstrate that microbial diversity on the surface of carbon steel and their functionality is vast. Our results suggest that in these nutrient poor conditions the role of methanogenic archaea in corrosive biofilm, in addition to sulphate reducing bacteria, could be greater than previously suspected.

A Study on Removal of Disinfection By-products in High Concentration Powdered Activated Carbon Membrane Bio-reactor Process for Advanced Water Treatment (고도정수처리를 위한 HCPAC-MBR 공정에서의 소독부산물 저감에 관한 연구)

  • Lee, Song-Hee;Jang, Sung-Woo;Seo, Gyu-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2006
  • This study was conducted to evaluate the performance of a membrane bioreactor filled with high concentration of powdered activated carbon (HCPAC-MBR) to reduce DBPs at the drinking water treatment. The pilot system was installed after the rapid sand filtration process whose plant was the conventional treatment process. The removal efficiencies of DBPs were measured during pilot operation period of 2 years. HAA and THM removal rates could be maintained around 80~90% without any troubles and then tremendous reduction of HAA and THM reactivity were observed more than 52%. The average removal rate of HAA formation potential (FP) and THM formation potential (FP) were 70.5% and 67.6% respectively. It is clear that the PAC membrane bioreactor is highly applicable for advanced water treatment to control DBPs.

Optimization of Fed-Batch Fermentation for Production of Poly-$\beta$-Hydroxybutyrate in Alcaligenes eutrophus

  • Lee, In-Young;Choi, Eun-Soo;Kim, Guk-Jin;Nam, Soo-Wan;Shin, Yong-Cheol;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.146-150
    • /
    • 1994
  • Production of poly-$\beta$-hydroxybutyrate (PHB) in fed-batch fermentation was studied. Utilization of carbon for PHB biosynthesis was investigated by using feeding solutions with different ratios of carbon to nitrogen (C/N). It was observed that at a high C/N ratio carbon source was more preferably utilized for PHB accumulation while its consumption for cellular metabolism appeared to be more favored at a low C/N value. A high cell concentration (184 g/l) was achieved when ammonium hydroxide solution was fed to control the pH, which was also utilized as the sole nitrogen source. For the mass production of PHB, two-stage fed-batch operations were carried out where PHB accumulation was observed to be stimulated by switching the ammonium feeding mode to the nitrogen limiting condition. A large amount of PHB (108 g/l) was obtained with cellular content of 80% within 50 hrs of operation.

  • PDF

The Effects of PAC (Powdered Activated Carbon) on Water Treatment Performance of an Immersed Membrane System Using Flat-sheet Membrane Module (평막을 이용한 침지형 막여과시스템에서 고농도 분말활성탄 주입에 의한 수처리성능 개선 효과)

  • Gai, Xiang-Juan;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.195-201
    • /
    • 2007
  • A submerged flat-sheet membrane separation system integrated with PAC (powdered activated carbon) was used in this research in order to investigate the effects of PAC on the efficiencies of operation and treatment and to evaluate the performance of the system. The experiments were carried out under operating conditions of a filtration rate of 0.38 m/d, water temperature of $20-28^{\circ}C$, and PAC dose of 0 g/L (Run-A) and 20 g/L (Run-B). The influent concentrations of TOC (total organic carbon), $NH_4{^+}-N$ (ammonia nitrogen) and $UV_{254}$ (UV absorbance at 254 nm) were 2.48 mg/L, 1.4 mg/L and 2.53 1/m, respectively. TOC removal of 43.2 and 73.6%, ammonia nitrogen removal of 4.9 and 15.9%, and $UV_{254}$ removal of 20.6 and 31.6% were obtained for Run-A and Run-B, respectively. During an experimental period of 33 days, no change was found in TMP (Run-B), but the TMP in Run-A increased by 5 kPa after 29 days. This research showed that the filtrate quality and the performance efficiency were enhanced when PAC was introduced into the filtration system.