• Title/Summary/Keyword: Operation Support Cost

Search Result 244, Processing Time 0.024 seconds

Integrated Fleet Management Support System for Industrial Carrier (인더스트리얼 캐리어를 위한 통합 선대관리 지원시스템)

  • 김시화;허강이
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.4
    • /
    • pp.63-76
    • /
    • 1999
  • This paper aims at developing an integrated fleet management support system for industrial carriers who usually control the vessels of their own or on a time charter to minimize the cost of shipping their cargoes. The work is mainly concerned with the operational management problem of the fleet owned by a major oil company, a typical industrial carrier. The optimal fleet management problem for the major oil company can be divided into two phase problem. The front end corresponds to the production operation problem of the transportation of crude oil, the refinery operation, and the distribution of product oil to comply with the demand of the market. The back end is to tackle the fleet scheduling problem to meet the seaborne transportation demand derived from the front end. Relevant optimization models for each phase are proposed and described briefly. Then a user-friendly integrated fleet management support system is built based on the proposed optimization models for both ends under Windows environment. A case study reflecting the practices of fleet management problem for the major oil company is carried out by using the system.

  • PDF

A Comparative Study on Start-up and Normal Operation Data for Phosphorus Removal in WWTPs (인 처리시설 시운전 및 정상운전 자료 비교·분석 연구)

  • Yun, Soyoung;Ryu, Jaena;Kim, Jonguk;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.113-120
    • /
    • 2013
  • This study aimed to obtain quantitative data for WWTP operators in phosphorus removal process. This was done by reviewing and comparing phosphorus removal efficiency(%), coagulants dosage(Al/P and $Al_2O_3$(mg/L)), sludge production($kg/m^3$), and operation cost($won/m^3$) of start-up and normal operation data. Phosphorus removal efficiency of all tertiary treatment process was up to 70 ~ 89 % in start-up and normal operation. Average molar ratio(Al/P) was similar as 5 in both operations, but average coagulants dosage (mg/L) of start-up (8.5 mg/L) was higher than normal operation (6.2 mg/L). Average operation cost was higher for start-up ($33.6won/m^3$) than normal operation ($28.4won/m^3$), while electricity cost required for the normal operation ($9.0won/m^3$) was higher by $3.5won/m^3$.

A Study on the Development of the Decision Support Model Investment for the in the Operation and Maintenance in Telecommunications (운용보전 투자결정 지원모델의 개발)

  • Park, Sun-Dal;Yang, Byeong-Hak;Sim, Hyeon-Taek;Jeong, Ho-Yeon;Jo, Yeong-Hyeon;Kim, Tae-Ho
    • IE interfaces
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 1990
  • The purpose of this study is to develop the decision support model for the investment in the operation and maintenance in telecommunication networks. First, we analyze the relation between the cost of quality and the quality of service, and then establish and analysis tool of the investment alternatives for the improvement of the quality of service. This study will offer a decision tool to enhance an efficiency of the operation and maintenance for telecommunication facilities, and will contribute to shaping a policy of network performance management.

  • PDF

A Study on the RAM Object Values (RAM 요소설계 목표값 연구)

  • 이한규;최진희
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.218-230
    • /
    • 2000
  • In the weapon system development/operation stage, the goals of RAM activities are to support the cost effective performance optimization in design and operation supports. In the study, the main contents are as follows; 1) To establish the operational concept and circumstance of the subsequent tank, the combat/operation scenario, the operational mode summary and mission profile for subsequent tank development are analyzed. 2) To evaluate the administrative and logistics down time for subsequent tank, the prefigured logistics circumstance and maintenance system are analyzed. 3) To calculate the RAM object values, a mathematical model for the user are developed. 4) To examinate the propriety of the RAM object values, the combat readiness are reviewed. The obtained RAM object values are provided to predict and analyze for the combat readiness, staying power, mission reliability, equipment availability and the logistic support capability.

  • PDF

Structural Analysis for Industrial 112 Frame Motor (산업용 112 FRAME 모터의 응력해석)

  • 우희석;김연달
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.353-360
    • /
    • 2001
  • Electro Electric Systems Division of HHI is developing new series of models for industrial mid/compact size motors to satisfy the demand of costumers. Various essential technologies are required for motors to support design technology on design and development stage. Conventional motors have several things to analyze for mechanical strength and structural deformation during manufacturing process or operation. Therefore, the manufacturing cost will be reduced and the danger of accident during operation will be prevented by recognizing and revising the problems prior to actual manufacturing and operation. 112 Frame motor (3.7 kW) has been analyzed for this study and the basic analysis technology is eventually developed by analyzing other models gradually (sequence of 112, 135, 250, 200, 280, 225, 160, 180 Frame motors). Then, the developed technologies are established as main factors to support the motor design technology and competitive motors will be manufactured to satisfy the costumers.

  • PDF

A Study on Integrated Logistic Support (통합병참지원에 관한 연구)

  • 나명환;김종걸;이낙영;권영일;홍연웅;전영록
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.277-278
    • /
    • 2001
  • The successful operation of a product In service depends upon the effective provision of logistic support in order to achieve and maintain the required levels of performance and customer satisfaction. Logistic support encompasses the activities and facilities required to maintain a product (hardware and software) in service. Logistic support covers maintenance, manpower and personnel, training, spares, technical documentation and packaging handling, storage and transportation and support facilities.The cost of logistic support is often a major contributor to the Life Cycle Cost (LCC) of a product and increasingly customers are making purchase decisions based on lifecycle cost rather than initial purchase price alone. Logistic support considerations can therefore have a major impact on product sales by ensuring that the product can be easily maintained at a reasonable cost and that all the necessary facilities have been provided to fully support the product in the field so that it meets the required availability. Quantification of support costs allows the manufacturer to estimate the support cost elements and evaluate possible warranty costs. This reduces risk and allows support costs to be set at competitive rates.Integrated Logistic Support (ILS) is a management method by which all the logistic support services required by a customer can be brought together in a structured way and In harmony with a product. In essence the application of ILS:- causes logistic support considerations to be integrated into product design;- develops logistic support arrangements that are consistently related to the design and to each other;- provides the necessary logistic support at the beginning and during customer use at optimum cost.The method by which ILS achieves much of the above is through the application of Logistic Support Analysis (LSA). This is a series of support analysis tasks that are performed throughout the design process in order to ensure that the product can be supported efficiently In accordance with the requirements of the customer.The successful application of ILS will result in a number of customer and supplier benefits. These should include some or all of the following:- greater product uptime;- fewer product modifications due to supportability deficiencies and hence less supplier rework;- better adherence to production schedules in process plants through reduced maintenance, better support;- lower supplier product costs;- Bower customer support costs;- better visibility of support costs;- reduced product LCC;- a better and more saleable product;- Improved safety;- increased overall customer satisfaction;- increased product purchases;- potential for purchase or upgrade of the product sooner through customer savings on support of current product.ILS should be an integral part of the total management process with an on-going improvement activity using monitoring of achieved performance to tailor existing support and influence future design activities. For many years, ILS was predominantly applied to military procurement, primarily using standards generated by the US Government Department of Defense (DoD). The military standards refer to specialized government infrastructures and are too complex for commercial application. The methods and benefits of ILS, however, have potential for much wider application in commercial and civilian use. The concept of ILS is simple and depends on a structured procedure that assures that logistic aspects are fully considered throughout the design and development phases of a product, in close cooperation with the designers. The ability to effectively support the product is given equal weight to performance and is fully considered in relation to its cost.The application of ILS provides improvements in availability, maintenance support and longterm 3ogistic cost savings. Logistic costs are significant through the life of a system and can often amount to many times the initial purchase cost of the system.This study provides guidance on the minimum activities necessary to Implement effective ILS for a wide range of commercial suppliers. The guide supplements IEC60106-4, Guide on maintainability of equipment Part 4: Section Eight maintenance and maintenance support planning, which emphasizes the maintenance aspects of the support requirements and refers to other existing standards where appropriate. The use of Reliability and Maintainability studies is also mentioned in this study, as R&M is an important interface area to ILS.

  • PDF

APPLICATION OF USN TECHNOLOGY FOR MONITORING EARTH RETAINING WALL

  • Sungwoo Moon;Eungi Choi;Injoon Kang
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.517-520
    • /
    • 2013
  • In construction operation, the temporary structure is used to support designed facilities or to provide work spaces for construction activities. Since the structure is used only during the construction operation, the operation may be given insufficient attention. The contractor is likely to try to save cost on the material and labor cost. This contractor's behavior frequently leads to construction accidents. In order to prevent accidents from the failure, the operation should be carefully monitored for identifying the effect of dynamics in the surrounding site area. Otherwise, any unexpected adversary effect could result in a very costly construction failure. This study presents the feasibility of the ubiquitous sensor network (USN) technology in collecting construction data during the construction operation of earth retaining walls. The study is based on the result at the Construction System Integration Laboratory (CSIL) at the Pusan National University. A USN-based system has been developed for monitoring the behavior of the temporary structure of earth retaining walls. The data collected from the sensors were used to understand the behavior of the temporary structure. The result of this study will be used in increasing the safety during the construction operation of retaining walls.

  • PDF

Development of Life Cycle Cost Estimation Software on the Aspect of Maintenance Strategies (유지보수관점에서의 수명주기비용예측 소프트웨어 개발)

  • Jun, Hyun-Kyu;Kim, Jae-Hoon;Kim, Jong-Woon;Park, Jun-Seo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.777-783
    • /
    • 2007
  • Life cycle costing is one of the most effective cost approaches when we choose a solution from series of alternative so the least long-term cost ownership is achieved. Life cycle costing in railway industry has been focused on the prediction of investment for railway vehicles. But in today, the life cycle cost, LCC, prediction on the aspect of operation and maintenance cost through whole life cycle is highly necessary. In this paper, we present a strategy for the development of life cycle cost estimation software on the aspect of maintenance strategies of railway vehicle. For this purpose, we suggested a structure of LCC software based on the UNIFE LCC model. And we developed a pilot version of software to evaluate the LCC model that we suggested for railway vehicle. We performed LCC analysis on the brake module of metro vehicle in case study and concluded that the software and model developed in this research could enough to support engineers in choosing better cost effective solutions from many alternatives.

  • PDF

A Study on the Determination of Economic Life of Weapon System by using the PRICE Model (PRICE 모텔을 이용한 무기체계 경제수명 결정에 관한 연구)

  • Kim Seung-Soo;Kang Sung-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.2
    • /
    • pp.13-31
    • /
    • 2004
  • This paper aims at efficient determining the economic life of weapon systems. Specifically, the procedure to estimate the life cycle cost at initial acquisition state or at development state using the PRICE model is proposed. The PRICE model is a parametric cost estimation which is widely used in the field of national defense. The model includes the estimation of the cost in life cycle of weapon systems such as research and development, acquisition, operation and support. Using this model, economic life of weapon systems can be determined. Based on an equivalent annual cost (EAC) method which sums the capital recovery with return (CR) and the equivalence cost (EC), the economic life will be calculated. A case study is accomplished to illustrate the proposed procedure.

Guide-line for Developing a Maintainability Program (보전성 경영 프로그램 개발을 위한 지침)

  • 이낙영;김종걸;권영일;홍연웅;전영록;나명환
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.269-269
    • /
    • 2001
  • Maintainability refers to the ease with which maintenance work can be done. It involves the process of ensuring that products can be easily and safely maintained and that the maintenance support requirement is minimized. When a product has a reasonably long life, the cost of operation and support during that life can greatly exceed the initial capital cost. The value to the customer of optimizing maintainability should be evident. Some effort and expense applied to achieving a product which can be easily and cheaply maintained will make very significant savings in the life cycle costs. In this paper, the International Standard IEC 60300-3-10, which is the application guide for maintainability, is considered. This standard can be used to implement a maintainability program covering the initiation, development and in-service phases of a product. It provides guidance on how the maintenance aspects of the tasks should be considered in order to achieve optimum maintainability. The elements of a maintainability program, which are maintenance policy and concept, maintainability studies, project management, design for maintainability, analysis and prediction methods, maintenance verification and validation, analysis of life cycle cost, maintenance support planning, and collection and analysis of maintenance data, are fully discussed in this paper.

  • PDF