• Title/Summary/Keyword: Operation Mode-based Model

Search Result 140, Processing Time 0.033 seconds

Research Activity on Rocket-Ramjet Combined-cycle Engine in JAXA

  • Takegoshi, Masao;Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.460-468
    • /
    • 2008
  • Recent activities on the scramjet and rocket-ramjet combined-cycle engine of Japan Aerospace Exploration Agency(JAXA) are herein presented. The scramjet engines and combined-cycle engines have been studied in the world and JAXA has also studied such the engines experimentally, numerically and conceptually. Based on the studies, 2 to 3 m long, hydrogen-fueled engine models were designed and tested at the Ramjet Engine Test Facility(RJTF) and the High Enthalpy Shock Tunnel(HIEST). A scramjet engine model was tested in Mach 10 to 14 flight condition at HIEST. A 3 m long scramjet engine model was designed to reduce a dissociation energy loss in a high temperature condition. Drag reduction by a tangential injection and two ways of a transverse fuel injection were examined. Combustor model tests at three operating modes of the combined-cycle engine were conducted, demonstrating the combustor operation and producing data for the engine design at each mode. Aerodynamic engine model tests were conducted in a transonic wind tunnel, demonstrating the engine operation in the ejector-jet mode. A 3 m long combined-cycle engine model has been tested in the ejector-jet mode and the ramjet mode since March 2007. Carbon composite material was examined for application to the engines. Production of the cooling channel on a nickel alloy plate succeeded by the electro-chemical etching.

  • PDF

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

Improvement of Surface Roughness by the Cutting Speed Control for Turning Operation (선삭에서 절삭 속도 제어를 통한 표면 거칠기 향상)

  • Choi, Jong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-30
    • /
    • 2008
  • As a basic machining process, turning is a widely used machining process in which a single-point cutting tool removes material from the surface of a rotating material. A common method of evaluating machining performance is to measure the surface roughness. In a turning operation, it is important to select cutting conditions for achieving high cutting performance. As a rule, cutting conditions can be classified into feed rate, depth of cut and insert radius. While cutting process even though cutting conditions are optimized, the average roughness can be deterioration due to wear of the cutting tool edge. In this study, the aim is to maintain the average roughness even though the cutting condition is irregularly changing within the predictable range due to the working environment. First, the surface roughness model influenced by cutting conditions is constructed based on the experimental results in a turning operation, Second, applying the sliding mode control theory to the turning operation model which is composed of the surface roughness model and the motor transfer function, the surface roughness is closed to the desired value. Finally, the effectiveness of this approach is demonstrated through the computer simulation.

  • PDF

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.

NONLINEAR MODEL-BASED CONTROL OF VANE TYPE CONTINUOUS VARIABLE VALVE TIMING SYSTEM

  • Son, M.;Lee, M.;Lee, K.;SunWoo, M.;Lee, S.;Lee, C.;Kim, W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.555-562
    • /
    • 2007
  • The Variable Valve Timing(VVT) system for high performance is a key technology used in newly developed engines. The system realizes higher torque, better fuel economy, and lower emissions by allowing an additional degree of freedom in valve timing during engine operation. In this study, a model-based control method is proposed to enable a fast and precise VVT control system that is robust with respect to manufacturing tolerances and aging. The VVT system is modeled by a third-order nonlinear state equation intended to account for nonlinearities of the system. Based on the model, a controller is designed for position control of the VVT system. The sliding mode theory is applied to controller design to overcome model uncertainties and unknown disturbances. The experimental results suggest that the proposed sliding mode controller is capable of improving tracking performance. In addition, the sliding mode controller is robust to battery voltage disturbance.

Design of Sliding Mode Controller for Jet Engine (제트엔진의 슬라이딩모드 제어기 설계)

  • Han, Dongju;Kong, Changduck
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.18-26
    • /
    • 2013
  • The technique of sliding mode control has been introduced and designed for jet engine controller. For designing the controller for controlled element, the state space model of the turbojet engine is derived in advance from the perturbation of non-linear engine dynamic equation at operation point. Based upon the jet engine model, the robust sliding mode controller is proposed associated with the optimum sliding mode function. The numerical simulation demonstrates that the designed sliding mode controller proves its effectiveness for the jet engine by showing superior control performances over the conventional PI controller with fast responses and robustness to disturbance.

A Study on the Development of a University-based Institutional Repository Operational Model for Scholarly Information Distribution (학술정보 유통을 위한 기관 레포지터리 운영모형 개발 연구)

  • Jang, Kum-Yeoun
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.93-109
    • /
    • 2013
  • This study extracted quality control factors for invigorating Institutional Repository operations, and re-extracted key quality control factors with significant influence among them. Furthermore, this study developed an operating model reflecting an improvement scheme of these key quality control factors, and estimated how much effective the operating model was to the user. As a result of inspecting satisfaction for IR operating model and the general system, it has been found that librarians' satisfaction for them is higher than that of the general user. Korea's universities prefer a proxy submission mode by librarians to a self-archiving submission mode by writers. Therefore, based on the operation model developed by this study, it is suggested that Institutional Repository operation can be actively invigorated with librarians of these universities as central players.

Control Technique of Triple-Active-Bridge Converter and Its Effective Controller Design Based on Small Signal Model for Islanding Mode Operation (단독운전 모드 동작에서의 Triple-Active-Bridge 컨버터 제어 기법 및 소신호 모델을 기반으로 한 제어기 설계)

  • Jeon, Chano;Heo, Kyoung-Wook;Ryu, Myung-Hyo;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.192-199
    • /
    • 2022
  • In DC distribution systems, a TAB converter employing multiple transformers is one of the most widely used topologies due to its high power density, modularizability, and cost-effectiveness. However, the conventional control technique for a grid-connected mode in the TAB converter cannot maintain its reliability for an islanding mode under a blackout situation. In this paper, the islanding mode control technique is proposed to solve this issue. To verify the relative stability and dynamic characteristics of the control technique, small-signal models of both the grid connected and the islanding mode are derived. Based on the small-signal models, PI controllers are designed to provide suitable power control. The proposed control technique, the accuracy of small-signal models, and the performance of the controllers are verified by simulations and experiments with a 1-kW prototype TAB converter.

Simulation and Performance Assessment of a Geiger-mode Imaging LADAR System (가이거모드 영상 LADAR 시스템의 시뮬레이션과 성능예측)

  • Kim, Seongjoon;Lee, Impyeong;Lee, Youngcheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.687-698
    • /
    • 2012
  • LADAR systems can rapidly acquire 3D point clouds by sampling the target surfaces using laser pulses. Such point clouds are widely used for diverse applications such as DSM/DTM generation, forest biomass estimation, target detection, wire avoidance and so on. Many kinds of LADAR systems have been developed with their respective purposes and applications. Particularly, Geiger mode imaging LADAR systems are increasingly utilized since they are energy efficient thank to extremely sensitive detectors incorporated into the systems. The purpose of this research is the performance assessment of a Geiger mode imaging LADAR system based on simulation with the real system parameters. We thus developed a simulation method of such a LADAR system by modeling its geometric, radiometric, optic and electronic aspects. Based on the simulation, we performed the performance assessment of a newly designed system to derive the outlier ratio and false alarm rate expected during its operation in almost real environment with reasonable system parameters. The proposed simulation and performance assessment method will be effectively utilized for system design and optimization, and test data generation.

Dynamic Model of an HSDI Common-rail Injector and Injection Rate Estimation (HSDI 커먼레일 인젝터 동적 모델 및 분사율 추정)

  • 남기훈;박승범;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.43-49
    • /
    • 2003
  • The common-rail fuel injection system is becoming a common technology for High Speed Direct Injection(HSDI) diesel engines. The injection timing and rate are important factors for combustion control and pollutants formation mechanisms during engine operation. This paper introduces an estimation methodology of the injection timing and rate of a common-rail injector for HSDI diesel engines. A sliding mode observer that is based on the nonlinear mathematical model of the common-rail injector is designed to overcome the model uncertainties. The injector model and the estimator we verified by relevant injection experiments in an injector test bench. The simulation and the experimental results show that the proposed sliding mode observer can effectively estimate the injection rate of the common-rail injector.