• Title/Summary/Keyword: Operating temperature range

Search Result 556, Processing Time 0.029 seconds

THE IMPACT OF POWER COEFFICIENT OF REACTIVITY ON CANDU 6 REACTORS

  • Kastanya, D.;Boyle, S.;Hopwood, J.;Park, Joo Hwan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.573-580
    • /
    • 2013
  • The combined effects of reactivity coefficients, along with other core nuclear characteristics, determine reactor core behavior in normal operation and accident conditions. The Power Coefficient of Reactivity (PCR) is an aggregate indicator representing the change in reactor core reactivity per unit change in reactor power. It is an integral quantity which captures the contributions of the fuel temperature, coolant void, and coolant temperature reactivity feedbacks. All nuclear reactor designs provide a balance between their inherent nuclear characteristics and the engineered reactivity control features, to ensure that changes in reactivity under all operating conditions are maintained within a safe range. The $CANDU^{(R)}$ reactor design takes advantage of its inherent nuclear characteristics, namely a small magnitude of reactivity coefficients, minimal excess reactivity, and very long prompt neutron lifetime, to mitigate the demand on the engineered systems for controlling reactivity and responding to accidents. In particular, CANDU reactors have always taken advantage of the small value of the PCR associated with their design characteristics, such that the overall design and safety characteristics of the reactor are not sensitive to the value of the PCR. For other reactor design concepts a PCR which is both large and negative is an important aspect in the design of their engineered systems for controlling reactivity. It will be demonstrated that during Loss of Regulation Control (LORC) and Large Break Loss of Coolant Accident (LBLOCA) events, the impact of variations in power coefficient, including a hypothesized larger than estimated PCR, has no safety-significance for CANDU reactor design. Since the CANDU 6 PCR is small, variations in the range of values for PCR on the performance or safety of the reactor are not significant.

Humidity Sensitive Properties of Copolymers of Polystyrene Contains Phosphonium Salts (포스포늄 염을 포함한 폴리스티렌 공중합체의 감습 성질)

  • Paek, Jee-Seon;Gong, Myoung-Seon
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.715-722
    • /
    • 1995
  • Vinylbenzyl triphenyl phosphonium chloride (VTPC) was prepared for the humid membrane. The humidity sensitive memo)lane was composed of copolymers, which have differnet content of VTPC and styrene (VTPC : ST=1 : 0.7 : 3, 5 : 5, 3 : 7). The changes in electrical properties of copolymers with relative humidity were measured. It was found that the impedance decreased with an increase of the content of VTPC in the humid membrane, and the Impedance also decreased with an increase of thickness of humid membrane. The copolymer derived from same equip of VTPC and ST showed 12M$\Omega$-100M$\Omega$ at 70%RH-90%RH, which was required for the current humidity sensor operating at high humidity or dew point. The temperature dependence coefficient at a temperature range 15$^{\circ}C$∼35$^{\circ}C$ was found to be -0.5%RH/$^{\circ}C$ and the hysterisis fabled within the range ${\pm}$2%RH. The response time was found to be 40seconds for varing relative humidity from 75% RH to 95%RH and vice versa.

  • PDF

A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola (전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰)

  • Choi, Chulyoung;Choi, Woongchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

A Study on the Shear Characteristics of Adhesives in Primary Mirror Supports of Satellite Camera (인공위성 카메라 주반사경 지지부에 적용되는 접착제의 전단 특성 연구)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.808-815
    • /
    • 2007
  • The optical performance of the mirror fur satellite camera is highly dependent on the adhesive properties between the mirror and its support. Therefore, in order to design a mirror with high optical performance, the mechanical properties of adhesives should be well defined. In this research, the mechanical properties of three kinds of space adhesives are studied. In case of the materials which show nearly incompressible behavior such as space adhesives, it is important to measure shear modulus which governs deviatoric stress components. Also the experiment should be performed in circumstances similar to real manufacturing process of mirror, because extra factors such as size effects, the adhesion effects of primer and reactions between adhesive and primer affect the properties of adhesive regions. In this research shear moduli of the adhesives are determined by using a single lap adhesively bonded joint. For the shear tests, several temperatures have been selected from $-20^{\circ}C$ to $55^{\circ}C$ which is operating temperature range of the adhesive. In the case of linear behavior materials, shear moduli are calculated through a linear curve fitting. Shear stress-strain relation is obtained by using an exponential curve fitting for material which shows non-linear behavior. The shear modulus of each adhesive is expressed as a function of temperature. Characteristics and adaptability of the adhesives are discussed regarding their temperature sensitivity.

A study on the electrical characteristics of CdZnS/CdTe heterojunction (CdZnS/CdTe 이종접합의 전기적 특성에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1647-1652
    • /
    • 2010
  • A CdS film has been used as a window layer in CdTe and Cu(In,Ga)$Se_2$ thin films solar cell. Partial substitution of Zn for Cd increases the photocurrent and the open-circuit voltage by providing a match in the electron affinities of the two materials and the higher band gap. In this paper, CdZnS/CdTe and CdS/CdTe heterojunctions were fabricated and the electrical characteristics were investigated. Current-voltage-temperature measurements showed that the current transport for CdS/CdTe heterojunction was controlled by both tunneling and interface recombination. However, CdZnS/CdTe heterojunction displayed different current transport mechanism with the operating temperature. For above room temperature, the current transport of device was generation/recombination in the depletion region and was the leakage current and/or tunneling in the range below room temperature.

A Study on the Measurement of the Elastic Moduli and Characteristics for Space Adhesives (우주용 접착제의 탄성계수 측정 및 특성 규명에 관한 연구)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Park, Sang-Hoon;Kim, Ji-Yeon;Uhm, Tae-Kyoung;Lee, Sang-Ryool;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik;Jang, Hong-Sul;Jung, Dae-Jun;Youn, Sung-Kie
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.101-106
    • /
    • 2007
  • The optical performance of the mirror for satellite camera is highly dependent on the adhesive properties between the mirror and its support. Therefore, in order to design a mirror with high optical performance, the mechanical properties of adhesives should be well defined. In this paper, the mechanical properties of three kinds of space adhesives are studied. Elastic moduli of the adhesives are determined by tensile tests. Stress-strain relation is obtained by using exponential curve fitting for the adhesive which shows non-linear behavior. In case of the linear behavior material, elastic modulus is calculated through linear curve fitting. For the tensile tests, several points have been selected in the operating temperature range of the adhesive. The elastic modulus of each adhesive is expressed as a function of temperature. Characteristics of the adhesives are discussed regarding their temperature sensitivity.

Development of Intermediate Temperature Fuel Cell Using a Solid Proton Conductor (고체 수소이온 전도체를 이용한 중온형 연료전지 개발)

  • Seo, Dong-Ho;Kim, Hong-Rok;Shakkthivel, P.;Shul, Yong-Gun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.22-32
    • /
    • 2008
  • Because of an emerging importance of clean energy, fuel cells are attract more attention due to their ability to produce high efficient power without any harmful emission. Fuel cells are energy conversion device with directly convert chemical energy into electrical energy by the chemical reactions, which have potential applications in automobile, spacecraft, stationary, industrial and home appliances. Recently there are gaining demand to develop an intermediate temperature fuel cell and available proton conductors at $200{\sim}500^{\circ}C$, which promising operating temperatures range for both material science and energy conversion processes. In this paper, we have reviewed electrochemical properties and current technology of solid state proton conductors. In addition, development of intermediate temperature fuel cell using the perovskite-type solid protonic conductor is also discussed.

On-orbit Thermal Control of MEMS Based Solid Thruster by Using Micro-igniter (MEMS 기반 고체 추력기의 마이크로 점화기를 이용한 궤도 열제어)

  • Ha, Heon-Woo;Kang, Soo-Jin;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.802-808
    • /
    • 2014
  • MEMS based solid propellant thruster researched for the purpose of an academic research will be verified at space environment through CubeSat program. For this, the temperature of the MEMS thruster should be within allowable operating temperature range by proper thermal control to prevent the ignition failure caused by ignition time delay and to guarantee the structural safety of the MEMS thruster in the low temperature. In this study, we proposed an effective thermal control strategy, that is to use micro-igniter as a heater and temperature sensor for active thermal control instead of using additional heater. The effectiveness of the strategy has been verified through on-orbit thermal analysis of CubeSats with MEMS thruster.

A Study on the high Temperature Properties of the Graded Thermal Barrier Coatings by APS and PAS (APS법으로 제조된 열장벽 피막과 PAS법으로 제조된 열장벽 성형체의 고온 물성에 관한 연구)

  • 강현욱;권현옥;한주철;송요승;홍상희;허성강;김선화
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.144-156
    • /
    • 1999
  • Thermal Barrier Coating with Functional Gradient Materials (FGM-TBC) can play an important role to protect the parts from harmful environments in high temperatures such as oxidation, corrosion, and wear and to improve the efficiency of aircraft engine by lowering the surface temperature on turbine blade. FGM-TBC can increase the life spans of product and improve the operating properties. Therfore, in this study the evaluations of mechanical and thermal properties of FGM-TBC such as fatigue, oxidation and wear-resistance at high temperatures have been conducted. The samples of both the TBC with 2, 3, 5 layers (YSZ/NiCrAlY) to be produced by Air Plasma Spray method (APS) and the bulk TBC with 6 layers to be produced by Plasma Assisted Sintering method (PAS) were used. Furthermore, residual stress, bond strength, and thermal conductivity were evaluated. The average thickness of the APS was 500$\mu\textrm{m}$ to 600$\mu\textrm{m}$ and the average thickness of the PAS was 3mm. The hardness number of the top layer of APS was 750 Hv to 810Hv and that of PAS was 950 Hv to 1440Hv. The $ZrO_2$ coating layer of APS was composed of tetragonal structure after spraying as the result of XRD analysis. As shown in the results of the high temperature wear test, the 3 layer coating of APS had the best wear resistance at $800^{\circ}C$ and the 5 layer coating of APS had the best wear resistance at $600^{\circ}C$. But, these coatings had the tendency of the low-temperature softening at $300^{\circ}C$. The main mechanism of wear was the adhesive wear and the friction coefficient of coatings was increased as increasing the test temperatures. A s results of thermal conductivity test, the ${\Delta}T$ of the APS coating was increased as number of layer and the range of thermal conductivity of the PAS was $800^{\circ}C$ to $1000^{\circ}C$.

  • PDF

Study on the effect of long-term high temperature irradiation on TRISO fuel

  • Shaimerdenov, Asset;Gizatulin, Shamil;Dyussambayev, Daulet;Askerbekov, Saulet;Ueta, Shohei;Aihara, Jun;Shibata, Taiju;Sakaba, Nariaki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2792-2800
    • /
    • 2022
  • In the core of the WWR-K reactor, a long-term irradiation of tristructural isotopic (TRISO)-coated fuel particles (CFPs) with a UO2 kernel was carried out under high-temperature gas-cooled reactor (HTGR)-like operating conditions. The temperature of this TRISO fuel during irradiation varied in the range of 950-1100 ℃. A fission per initial metal atom (FIMA) of uranium burnup of 9.9% was reached. The release of gaseous fission products was measured in-pile. The release-to-birth ratio (R/B) for the fission product isotopes was calculated. Aspects of fuel safety while achieving deep fuel burnup are important and relevant, including maintaining the integrity of the fuel coatings. The main mechanisms of fuel failure are kernel migration, silicon carbide corrosion by palladium, and gas pressure increase inside the CFP. The formation of gaseous fission products and carbon monoxide leads to an increase in the internal pressure in the CFP, which is a dominant failure mechanism of the coatings under this level of burnup. Irradiated fuel compacts were subjected to electric dissociation to isolate the CFPs from the fuel compacts. In addition, nondestructive methods, such as X-ray radiography and gamma spectrometry, were used. The predicted R/B ratio was evaluated using the fission gas release model developed in the high-temperature test reactor (HTTR) project. In the model, both the through-coatings of failed CFPs and as-fabricated uranium contamination were assumed to be sources of the fission gas. The obtained R/B ratio for gaseous fission products allows the finalization and validation of the model for the release of fission products from the CFPs and fuel compacts. The success of the integrity of TRISO fuel irradiated at approximately 9.9% FIMA was demonstrated. A low fuel failure fraction and R/B ratios indicated good performance and reliability of the studied TRISO fuel.