Humidity Sensitive Properties of Copolymers of Polystyrene Contains Phosphonium Salts

포스포늄 염을 포함한 폴리스티렌 공중합체의 감습 성질

  • Published : 1995.09.01

Abstract

Vinylbenzyl triphenyl phosphonium chloride (VTPC) was prepared for the humid membrane. The humidity sensitive memo)lane was composed of copolymers, which have differnet content of VTPC and styrene (VTPC : ST=1 : 0.7 : 3, 5 : 5, 3 : 7). The changes in electrical properties of copolymers with relative humidity were measured. It was found that the impedance decreased with an increase of the content of VTPC in the humid membrane, and the Impedance also decreased with an increase of thickness of humid membrane. The copolymer derived from same equip of VTPC and ST showed 12M$\Omega$-100M$\Omega$ at 70%RH-90%RH, which was required for the current humidity sensor operating at high humidity or dew point. The temperature dependence coefficient at a temperature range 15$^{\circ}C$∼35$^{\circ}C$ was found to be -0.5%RH/$^{\circ}C$ and the hysterisis fabled within the range ${\pm}$2%RH. The response time was found to be 40seconds for varing relative humidity from 75% RH to 95%RH and vice versa.

Vlnylbenzyl triphenyl phosphonim chloride (VTPC) 단량체를 감습막으로 사용하기 위하여 합성하였다. 감습막 성분은 서로 다른 조성의 VTPC와 스티렌의 공중합체(VTPC : ST=1 : 0, 7 : 3, 1 : 1, 3 : 7)들이며 감습막의 상대 습도 변화에 대한 전기적 성질의 변화를 측정하였다. 임퍼던스는 감습막중 VTPC의 함량이 증가할수록 감소하였으며, 또한 전극위에 도포한 감습막의 두께가 증가하면 임퍼던스 역시 감소하였다. 감습막중 VTPC와 ST의 성분비가 1대 1인 감습막의 임피던스는 상대습도 70~90%RH 범위에서 12M$\Omega$에서 100K$\Omega$ 사이에서 변하였으며 고습이나 결로를 감지할 수 있는 센서로서 응용이 가능하였다. 15$^{\circ}C$~35$^{\circ}C$범위에서의 은도 의존상수는 -0.5%RH/$^{\circ}C$이었으며 히스테리시스는 $\pm$2%RH의 범위 안에서 나타났다. 응답속도는 상대습도가 75%RH에서 95RH%까지 또는 역으로 변화할 때 40초이었다.

Keywords

References

  1. Moisture and Humidity v.1-5 The Most Common Problem of Moisture/Humidity Measurement and Control F.C. Quinn
  2. Japan Pat. no.58-16467 Y. Takaoka;Y. Maebashi;S. Mobayashi;T. Usui
  3. US Pat. 3,703,699 v.3 no.703
  4. Polym. J. v.15 no.621 N. Kinjo;S. Ohara;T. Sugawa;S. Tsuchitai
  5. Kobunshi Ronbunshu v.41 no.209 Y. Sakai;Y. Sadaoka;S. Okumura;K. Ikeuchi
  6. Sensors and Actuators v.11 no.319 J.P. Randin;F. Zulling
  7. Kobunshi Ronbunshu v.41 no.205 Y. Sakai;Y. Sadaoka;H. Omura;N. Watanabe
  8. J. Mater. Sci. v.21 no.235 Y. Sadaoka;Y. Sakai
  9. Sensors and Actuators v.13 no.243 Y. Sakai;Y. Sadaoka;H. Hukumoto
  10. Sensor and Actuators v.9 no.125 Y. Sakai;Y. Sadaoka;K. Ikeuchi
  11. J. Electrochem. Soc. v.136 no.171 Y. Sakai;Y. Sadaoka;M. Matsuguchi
  12. Kobunshi Ronbunshu v.45 no.549 S. Otsuki;Y. Dozen
  13. Senser and Actuators v.16 no.359 Y. Sakai;Y. Sadaoka;M. Shimada
  14. Proc. of STRC Meeting on Sensor Technology v.2 no.367 J.S. Jo;H.M. Lee;K.H. Kim;M.S. Gong
  15. Polymer. (Korea) v.16 no.266 J.S. Jo;I.Y. Lee;H.M. Lee;K.H. Kim;M.S. Gong
  16. Sensor and Actuators v.8 no.23 P.H. Huang
  17. Anal. chem. Sym. Ser. v.17 no.451 S. Miyoshi;T. Sugihara;A. Jinda;M. Higikigawa
  18. Sensor and Actuators v.16 no.359 Y. Sakai;Y. Sadaoka;M. Matsuguchi;N. Moriga;M. Shimada
  19. J. Mater. Res. Korea v.3 no.598 T.M. Kim;I.Y. Lee;J.K. Park;M.S. Gong
  20. Polymer. Korea v.18 no.842 J.S. Paek;I.Y. Lee;J.K. Park;M.S. Gong