• 제목/요약/키워드: Operating mode

검색결과 1,467건 처리시간 0.03초

레이저 절단기의 모드해석과 구조해석 (Modal and Structural Analysis of Laser Cutter)

  • 조규남;박래영
    • 대한조선학회논문집
    • /
    • 제31권3호
    • /
    • pp.129-134
    • /
    • 1994
  • 레이저 절단기는 고도의 정밀을 요하는 선체구조강판의 가공용으로 최근 조선소에서 사용되게 되었으며, 정밀성 유지를 위해서 이 시스템 자체의 운동으로 인한 변형은 일정한도 내에서 유지되어야 한다. 본 논문에서는 새로 개발된 레이저 절단기의 모드해석 및 구조해석을 이 시스템의 설계요구조건에 부합하는지를 검토하기 위하여 수행하였으며, 이를 위하여 유한 요소 모델링의 효과적인 기법과 가상 질량요소를 분대하는 기법, 가속도장의 변화로 주어지는 외력조건의 구체화 방법등을 제시하였다. 또한 고유진동해석을 수행하여 이 시스템의 동적효과 존재 여부를 검토하였으며 시간영역의 동적해석을 하지 않고 정적해석을 통한 시스템 특성 규명 타당성을 규명하였다. 해석 접근 방법의 유용성이 입증되었으며 결과적으로 본 논문에서 보여 준 해석기법은 유사한 시스템의 특성 규명에 유효하게 적용될 수 있음을 시사하고 있다.

  • PDF

선형저밀도 폴리에틸렌 튜빙의 파손 메커니즘과 장기 정수압 거동 (Failure Mechanism and Long-Term Hydrostatic Behavior of Linear Low Density Polyethylene Tubing)

  • 원종일;정유경;신세문;최길영
    • 폴리머
    • /
    • 제32권5호
    • /
    • pp.440-445
    • /
    • 2008
  • 정수압 상태의 선형저밀도 폴리에틸렌 튜빙의 파손 메커니즘과 파손 모폴로지를 연구하였다. 비디오현미경과 주사전자현미경을 이용한 관찰 결과, 선형저밀도 폴리에틸렌 튜빙의 파손모드는 내면에서 외면으로 진전되는 크랙을 수반하는 취성파괴임을 확인하였다. 또한 산화유발시간과 적외선분광분석을 통하여, 파손된 선형저밀도 플리에틸렌 튜빙의 단면상에 열화에 의한 발열 피크와 카르보닐 피크의 증가를 관찰하였다. 열 가속에 의한 음력과 수명특성 사이의 관계를 고려한 선형저밀도 폴리에틸렌 튜빙의 가속수명시험법 및 시험장치를 개발하였다. 선형저밀도 폴리에틸렌 튜빙의 장기 정수압 상태의 수명을 예측하기 위해 아레니우스 모델과 와이블 분포를 적용한 통계학적 기법을 도입하였다. 그 결과, 사용온도 $25^{\circ}C$에서의 선형저밀도 폴리에틸렌 튜빙의 장기수명을 평가/분석하였다.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

단일칩 마이컴을 이용한 위상변위 방식 풀브리지 직류-직류 전력변환기 (Phase-Shift Full-Bridge DC-DC Converter using the One-Chip Micom)

  • 정강률
    • 전기전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.517-527
    • /
    • 2021
  • 본 논문에서는 단일칩 마이컴을 이용한 위상변위 방식 직류-직류 전력변환기를 제안한다. 제안한 전력변환기의 1차측은 위상변위 방식에 의하여 단극성 펄스폭변조(unipolar PWM)로 동작하는 풀브리지 전력구조이며, 2차측은 4개의 다이오드로 구성된 풀브리지 전파정류기이다. 제안한 전력변환기의 제어는 단일칩 마이컴에 의해 수행되고, 그 MOSFET 스위치들은 부트스트랩 회로에 의해 구동된다. 그래서 전력변환기의 전체 시스템은 간단하다. 제안한 전력변환기는 공진회로와 저지커패시터를 이용하여 고효율을 달성한다. 본 논문에서는 먼저, 제안한 전력변환기의 전력회로의 동작을 각 동작모드를 따라 설명한다. 그리고 제안한 전력변환기의 전력회로 설계방식을 보이고 제안한 전력변환기를 동작시키는 마이컴 상의 소프트웨어 제어 알고리즘과 피드백 및 스위치 구동 회로에 관하여 간략히 설명한다. 그 후, 본 논문에서 제시한 설계와 구현방식에 의하여 설계하고 제작된 시제품 전력변환기의 실험결과를 통하여 제안한 전력변환기의 동작 특성을 입증한다. 실험결과에서 약 92% 정도의 최고 효율을 얻었다.

Computational Analysis of the Effects of Spray Parameters and Piston Shape on Syngas-Diesel Dual-Fuel Engine Combustion Process

  • Ali, Abubaker Ahmed M.M.;Kabbir, Ali;Kim, Changup;Lee, Yonggyu;Oh, Seungmook;Kim, Ki-seong
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.192-204
    • /
    • 2018
  • In this study, a 3D CFD analysis method for the combustion process was established for a low calorific value syngas-diesel dual-fuel engine operating under very lean fuel-air mixture condition. Also, the accuracy of computational analysis was evaluated by comparing the experimental results with the computed ones. To simulate the combustion for the dual-fuel engine, a new dual-fuel chemical kinetics set was used that was constituted by merging two verified chemical kinetic sets: n-heptane (173 species) for diesel and Gri-mech 3.0 (53 species) for syngas. For dual-fuel mode operations, the early stage of combustion was dominated by the fuel burning inside or near the spray plume. After which, the flame propagated into the syngas in the piston bowl and then proceeded toward the syngas in the squish zone. With the baseline injection system and piston shape, a significant amount of unburned syngas was discharged. To solve this problem, effects of the injection parameters and piston shape on combustion characteristics were analyzed by calculation. The change in injection variables toward increasing the spray plume volume or the penetration length were effective to cause fast burning in the vicinity of TDC by widening the spatial distribution of diesel acting as a seed of auto-ignition. As a result, the unburned syngas fraction was reduced. Changing the piston shape with the shallow depth of the piston bowl and 20% squish area ratio had a significant effect on the combustion pattern and lessened the unburned syngas fraction by half.

피드백 구조를 갖는 Self-Timed Ring 기반의 경량 TRNG (A Self-Timed Ring based Lightweight TRNG with Feedback Structure)

  • 최준영;신경욱
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.268-275
    • /
    • 2020
  • 정보보안 응용에 적합한 self-timed 링 (ring) 기반 TRNG (true random number generator)의 경량 하드웨어 설계에 관해 기술한다. TRNG의 하드웨어 복잡도를 줄이기 위해 피드백 구조의 엔트로피 추출기를 제안하였으며, 이를 통해 링 스테이지 수를 최소화 하였다. 본 논문의 FSTR-TRNG는 동작 주파수와 엔트로피 추출 회로를 고려하여 링 스테이지 수가 11의 배수가 되도록 결정되었으며, 링 발진기가 등간격 모드로 진동할 수 있도록 토큰 (token)과 버블(bubble) 개수의 비를 결정하였다. FSTR-TRNG는 FPGA 디바이스에 구현하여 난수 생성 동작을 검증하였다. Spartan-6 FPGA 디바이스에 구현된 FSTR-TRNG로부터 2,000만 비트의 데이터를 추출하여 NIST SP 800-22에 규정된 통계학적 무작위성 테스트를 수행한 결과, 15개의 테스트가 모두 기준을 만족하는 것으로 확인되었다. Spartan-6 FPGA 디바이스로 합성한 FSTR-TRNG는 46 슬라이스로 구현이 되었으며, 180 nm CMOS 표준셀로 합성하는 경우에는 약 2,500 등가 게이트로 구현되었다.

정압베어링을 적용한 터보팽창기의 회전체 동역학 해석 및 구동시험 (Rotordynamic Analysis and Operation Test of Turbo Expander with Hydrostatic Bearing)

  • 이동현;김병옥;정준하;임형수
    • Tribology and Lubricants
    • /
    • 제38권2호
    • /
    • pp.33-40
    • /
    • 2022
  • In this study, we present rotor dynamic analysis and operation test of a turbo expander for a hydrogen liquefaction plant. The turbo expander consists of a turbine and compressor wheel connected to a shaft supported by two hydrostatic radial and thrust bearings. In rotor dynamic analysis, the shaft is modeled as a rigid body, and the equations of motion for the shaft are solved using the unsteady Reynolds equation. Additionally, the operating test of the turbo expander has been performed in the test rig. Pressurized helium is supplied to the bearings at 8.5 bar. Furthermore, we monitor the shaft vibration and flow rate of the helium supplied to the bearings. The rotor dynamic analysis result shows that there are two critical speeds related with the rigid body mode under 40,000 rpm. At the first critical speed of 36,000 rpm, the vibration at the compressor side is maximum, whereas that of the turbine is maximum at the second critical speed of 40,000 rpm. The predicted maximum shaft vibration is 3 ㎛, whereas sub-synchronous vibration is not presented. The operation test results show that there are two critical speeds under the rated speed, and the measured vibration value agrees well with predicted value. The measured flow rate of the helium supplied to the bearing is 2.0 g/s, which also agrees well with the predicted data.

Active control of amplitude and phase of high-power RF systems in EAST ICRF heating experiments

  • Guanghui Zhu;Lunan Liu;Yuzhou Mao;Xinjun Zhang;Yaoyao Guo;Lin Ai;Runhao Jiang;Chengming Qin;Wei Zhang;Hua Yang;Shuai Yuan;Lei Wang;Songqing Ju;Yongsheng Wang;Xuan Sun;Zhida Yang;Jinxin Wang;Yan Cheng;Hang Li;Jingting Luo
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.595-602
    • /
    • 2023
  • The EAST ICRF system operating space has been extended in power and phase control with a low-level RF system for the new double-strap antenna. Then the multi-step power and periodic phase scanning experiment were conducted in L-mode plasma, respectively. In the power scanning experiment, the stored energy, radiation power, plasma impedance and the antenna's temperature all have positive responses during the short ramp-ups of PL;ICRF. The core ion temperature increased from 1 keV to 1.5 keV and the core heating area expanded from |Z| ≤ 5 cm to |Z| ≤ 10 cm during the injection of ICRF waves. In the phasing scanning experiment, in addition to the same conclusions as the previous relatively phasing scanning experiment, the superposition effect of the fluctuation of stored energy, radiation power and neutron yield caused by phasing change with dual antenna, resulting in the amplitude and phase shift, was also observed. The active control of RF output facilitates the precise control of plasma profiles and greatly benefits future experimental exploration.

Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel

  • Ruslan А. Irkimbekov ;Artur S. Surayev ;Galina А. Vityuk ;Olzhas M. Zhanbolatov ;Zamanbek B. Kozhabaev;Sergey V. Bedenko ;Nima Ghal-Eh ;Alexander D. Vurim
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1439-1447
    • /
    • 2023
  • The fuel cycle characteristics of the IVG.1M reactor were studied within the framework of the research reactor conversion program to modernize the IVG.1M reactor. Optimum use of the nuclear fuel and reactor was achieved through routine methods which included partial fuel reloading combined with scheduled maintenance operations. Since, the additional problem in planning the fuel cycle of the IVG.1M reactor was the poisoning of the beryllium parts of the core, reflector, and control system. An assessment of the residual power and composition of spent fuel is necessary for the selection and justification of the technology for its subsequent management. Computational studies were performed using the MCNP6.1 program and the neutronics model of the IVG.1M reactor. The proposed scheme of annual partial fuel reloading allows for maintaining a high reactor reactivity margin, stabilizing it within 2-4 βeff for 20 years, and achieving a burnup of 9.9-10.8 MW × day/kg U in the steady state mode of fuel reloading. Spent fuel immediately after unloading from the reactor can be placed in a transport packaging cask for shipping or safely stored in dry storage at the research reactor site.

One year of treating patients with open fractures of the lower extremity in a new military trauma center in Korea: a case series

  • Ji Wool Ko;Giho Moon;Jin Geun Kwon;Kyoung Eun Kim;Hankaram Jeon;Kyungwon Lee
    • Journal of Trauma and Injury
    • /
    • 제36권4호
    • /
    • pp.376-384
    • /
    • 2023
  • Purpose: The Armed Forces Trauma Center of Korea was established in April 2022. This study was conducted to report our 1-year experience of treating soldiers with open fractures of the lower extremity. Methods: In this case series, we reviewed the medical records of 51 Korean soldiers with open fractures of the lower extremity between April 2022 and March 2023 at a trauma center. We analyzed patients with Gustilo-Anderson type II and III fractures and reported the duration of transportation, injury mechanisms, injured sites, and associated injuries. We also presented laboratory findings, surgery types, intensive care unit stays, hospital stays, rehabilitation results, and reasons for psychiatric consultation. Additionally, we described patients' mode of transport. Results: This study enrolled nine male patients who were between 21 and 26 years old. Six patients had type II and three had type III fractures. Transport from the accident scene to the emergency room ranged from 75 to 455 minutes, and from the emergency room to the operating room ranged from 35 to 200 minutes. Injury mechanisms included gunshot wounds, landmine explosions, grenade explosions, and entrapment by ship mooring ropes. One case had serious associated injuries (inhalation burn, open facial bone fractures, and hemopneumothorax). No cases with serious blood loss or coagulopathies were found, but most cases had a significant elevation of creatinine kinase. Two patients underwent vascular reconstruction, whereas four patients received flap surgery. After rehabilitation, six patients could walk, one patient could move their joints actively, and two patients performed active assistive movement. Eight patients were referred to the psychiatry department due to suicidal attempts and posttraumatic stress disorder. Conclusions: This study provides insights into how to improve treatment for patients with military trauma, as well as medical services such as the transport system, by revising treatment protocols and systematizing treatment.