• 제목/요약/키워드: Operating altitude

검색결과 141건 처리시간 0.032초

저고도 방공 레이더 최적 배치에 관한 연구 (Study on the Optimal Location of Low Altitude Air Defense Radar)

  • 백경혁;이영우;장훈
    • 한국군사과학기술학회지
    • /
    • 제17권2호
    • /
    • pp.248-257
    • /
    • 2014
  • As observed in the recent war, suppression of enemy air defense operation is one of the major tactics, simultaneously conducted with high payoff target. Specifically, our air defense operation should be properly constructed, since the operating environment of our forces mostly consists with mountainous terrain, which makes detections of the enemy difficult. The effective arrangements of low altitude air defense radars can be suggested as a way of improving the detection capability of our forces. In this paper, we consider the location problem of low altitude air defense radar, and formulate it as an Integer Programming. Specifically, we surveyed the previous researches on facility location problems and applied two particularly relevant models(MCLP, MEXCLP) to our problem. The terrain factor was represented as demand points in the models. We verified the optimal radar locations for operational situations through simulation model which depicts simple battle field. In the simulation model, the performance of optimal radar locations are measured by the enemy detection rate. With a series of experiments, we may conclude that when locating low altitude air defense radars, it is important to consider the detection probability of radar. We expect that this finding may be helpful to make a more effective air defense plan.

고고도 환경 모사를 위한 멀티 이젝터 설계 (Multi-Ejector Design for High Altitude Simulation)

  • 남궁혁준;심창열;이재호;박순상
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.705-708
    • /
    • 2011
  • 이젝터 시스템은 주유동 제트에 발생되는 전단 응력과 압력차에 의해 흡입 챔버 압력에 영향을 미치거나 이차 흡입 유동을 유도한다. 이젝터는 터빈 기반 복합사이클 추진기관 및 로켓엔진의 고고도 모사 설비, 압력회복장치, 담수화 시스템, 이젝터 램젯시스템과 같이 많은 분야에 적용되어 널리 사용된다. 본 연구에서는 다양한 고고도 환경 모사를 위한 멀티 이젝터의 형상 및 운전 조건을 결정하는 설계 절차를 수립하고자 하였다.

  • PDF

Flow Dynamics in a Supersonic Diffuser at Minimum Starting Condition to Simulate Rocket's High Altitude Test on the Ground

  • Yeom, Hyo-Won;Yoon, Sang-Kyu;Sung, Hong-Gye;Kim, Yong-Wook;Oh, Seung-Hyup
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.442-447
    • /
    • 2008
  • A numerical analysis has been conducted to investigate and characterize the unsteadiness of flow structure and oscillatory vacuum pressure inside of a supersonic diffuser equipped to simulate the high-altitude rocket test on the ground. A physical model of concern includes a rocket motor, a vacuum chamber, and a diffuser, which have axisymmetric configurations, using nitrogen gas as a driving fluid. Emphasis is placed on investigating physical phenomena of very complex and oscillatory flow evolutions in the diffuser operating at very close to the starting condition, i.e. minimum starting condition, which is one of major important parameters in diffuser design points of view.

  • PDF

가스터빈엔진 고공성능시험설비의 측정불확도 개선 (Improving the Measurement Uncertainty of Altitude Test Facility for Turbine Engines)

  • 윤민수;양인영;전용민;양수석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.777-781
    • /
    • 2001
  • An Altitude Engine Test Facility(AETF) was built at the Korea Aerospace Research Institute in October 1999 and has been being operated for altitude testing of the gas turbine engines of 3,000 Ibf class or less. The AETF has been calibrated using several engines such as J69 engine of Teledyne Co. as a facility checkout engine. Based on the test results, uncertainty analyses on the air flow rate and thrust were performed according to ASME PTC 19.1-1998. As the analyses showed that the level of uncertainty was not satisfactory over the whole operating envelop, several modifications of the facility and testing method were made in order to improve the measurement uncertainty. As a result, the uncertainty of the air flow measurement was improved by 0.1 % over all the test conditions, and the net thrust measurement by upto 3%. The improved measurement uncertainties of air flow and thrust are 0.68-0.73% and 0.4-1.3%, respectively.

  • PDF

고공환경모사 시험설비 구축을 위한 개념설계 (Concept Design of High Altitude Simulation Test Facility)

  • 김상헌;김용욱;이정호;유병일;조상연;오승협
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.75-81
    • /
    • 2006
  • 소형위성발사체(KSLV-I)의 2단에 적용되어질 엔진의 작동환경은 진공과 유사하다. 고고도에서 사용되는 로켓은 성능을 최대한 향상시키기 위해서 노즐의 팽창비가 상대적으로 크게 설계된다. 하지만 지상에서 연소시험을 수행할 경우 배압이 상대적으로 크기 때문에 노즐에서 박리(separation)가 발생하여, 실제 추력 값보다 작은 추력을 발생시키며 노즐에 극심한 진동을 유발하게 된다. 그러므로 정확한 추력을 예측할 수가 없으므로 고공 환경을 모사할 수 있는 시험설비를 이용하여 연소시험을 수행하는 것이 반드시 필요하다.

  • PDF

고공환경 모사를 위한 초음속 디퓨저의 시동 특성 분석 (Starting Characteristics of Supersonic Exhaust Diffuser for Altitude Simulation Testing)

  • 김용욱;이정호;김상헌;오승협
    • 항공우주기술
    • /
    • 제11권2호
    • /
    • pp.117-121
    • /
    • 2012
  • 고공 환경 하에서 작동하는 우주발사체 상단 추진기관의 경우 지상에서 실제 작동 환경에 가까운 조건에서 연소시험을 수행하여 그 성능을 검증하게 된다. KSLV-I 상단 추진기관의 경우 원통형 디퓨저를 이용하여 고공환경 모사시험을 수행하였으며, 디퓨저의 설계 검증 및 시동특성을 확인하기 위해 축소형 디퓨저에 대한 비반응 유동시험 및 연소시험을 수행하였다. 본 논문에서는 축소형과 실물형 디퓨저에 대한 시험 결과를 제시하고 시동특성에 대해 분석하였다.

가스터빈엔진 고공성능시험설비의 측정불확도 개선 (Improving the Measurement Uncertainty of Altitude Test Facility for Gas Turbine Engines)

  • 이대성;양인영;전용민;김춘택;양수석
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1496-1502
    • /
    • 2002
  • An Altitude Engine Test Facility(AETF) was built at the Korea Aerospace Research Institute in October 1999 and has been being operated for altitude testing of gas turbine engines of 3,000 Ibf class or less. The AETF has been calibrated using several engines such as J69 of Teledyne Co. as a facility checkout engine. Uncertainty analyses on the air flow rate and thrust were performed using the test results, according to ASME PTC 19.1-1998. Several modifications on the facility and test method were made in order to improve the measurement uncertainty to a satisfactory level over the whole operating envelop. Spatial distributions of pressure and temperature were measured, sensors were substituted by more accurate ones, inlet duct was modified to refine the flow quality, and pressure control logic was revised to remove the cell pressure fluctuation. As a result, the uncertainty of the air flow measurement was improved by 0.1% over all the test conditions, and the net thrust measurement by up to 3%. The improved measurement uncertainties of air flow and thrust are 0.68~O.73% and 0.4~1.3%, respectively.

KSLV-I 킥모터용 고공환경모사 시험설비 구축을 위한 기본설계 (Preliminary Design of High Altitude Test Facility for Kick Motor of KSLV-I Development)

  • 김용욱;이정호;유병일;김상헌;오승협
    • 항공우주기술
    • /
    • 제6권2호
    • /
    • pp.180-187
    • /
    • 2007
  • KSLV-I의 경우 1단은 액체 추진기관으로 구성되어 있으며, 2단은 킥모터(Kick Motor ; KM)를 이용하게 된다. 작동고도가 높고 확장비가 큰 KM을 지상에서 연소시험 할 경우 배압이 상대적으로 크기 때문에 노즐에서 박리가 발생되고 모터는 실제 추력 값보다 낮게 추력을 발생 시키며 노즐에서 극심한 진동을 유발 시키므로 지상에서 고공환경을 모사할 수 있는 고공환경모사 시험설비가 꼭 필요하다. 본 논문은 KSLV-I 2단 추진기관인 킥모터 개발을 위한 고공환경모사 시험설비 구축을 위해 기본설계를 진행하였다.

  • PDF

엔진 고공 시험에서 공기 유량 측정용 벤투리 파이프의 제작 및 측정 불확도 분석 (Manufacture and Measurement Uncertainty Analysis of a Venturi Pipe for Airflow Measurement in Altitude Engine Test)

  • 양인영;오중환
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.36-41
    • /
    • 2010
  • Design, manufacture and calibration procedures of a venturi pipe flowmeter for airflow measurement in altitude engine test were discussed. Altitude engine test using venturi pipe was given as an example. The venturi was designed per the ISO standard of ISO5167, and was intented to include the entire airflow range in the test envelope of the gas turbine engine. Measurement uncertainty analysis was performed in the design procedure to investigate the effect of venturi geometry and sensor specification upon the measurement uncertainty. Manufacturing process was designed to minimize the deviation from the geometry of design. Calibration was performed to get the relationship between the discharge coefficient and the pipe Reynolds number. Then the uncertainty was assessed again using real data acquired during engine test. Through these procedures, it was possible to maintain the uncertainty of airflow measurement under 1 % for most of the operating envelope of the gas turbine engine. The discharge coefficient of the venturi pipe showed agreement with the value suggested in the ISO standard ISO5167-4 within 0.6 %.

서해안 인접공항의 저고도 항공기상 정확도 연구 (A Study on Accuracy of Meteorological Information for Low Altitude Aerospace around the Airport on the West Coast)

  • 조영진;유광의
    • 한국항공운항학회지
    • /
    • 제28권2호
    • /
    • pp.53-62
    • /
    • 2020
  • This study is to evaluate the accuracy of the meteorological information provided for the aircraft operating at low altitude. At first, it is necessary to identify crucial elements of weather information closely related to flight safety during low altitude flights. The study conducted a survey of pilots of low altitude aircraft, divided into pre-flight and in-flight phases, and reached an opinion that wind direction, wind speed, cloud coverage and ceiling and visibility are important items. Related to these items, we compared and calculated the accuracy of TAFs and METARs from Taean Airfield, Seosan Airport and Gunsan Airport because of their high number of domestic low-altitude flights. Accuracy analysis evaluated the accuracy of two numerical variables, Mean Absolute Error(MAE) and Root Mean Square Error(RMSE), and the cloud coverage which is categorical variable was calculated and compared by accuracy. For numeric variables, one-way ANOVA, which is a parameter-test, was approached to identify differences between actual forecast values and observations based on absolute errors for each item derived from the results of MAE and RMSE accuracy analyses. To determine the satisfaction of both normality assumptions and equivalence variability assumptions, the Shapiro-Wilk test was performed to verify that they do not have a normality distribution for numerical variables, and for the non-parametric test, Kruscal-Wallis test was conducted to determine whether or not they are satisfied.