• Title/Summary/Keyword: Operating Characteristic Curve

Search Result 600, Processing Time 0.021 seconds

Application of Receiver Operating Characteristic (ROC) Curve for Evaluation of Diagnostic Test Performance (진단검사의 특성 평가를 위한 Receiver Operating Characteristic (ROC) 곡선의 활용)

  • Pak, Son-Il;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.33 no.2
    • /
    • pp.97-101
    • /
    • 2016
  • In the field of clinical medicine, diagnostic accuracy studies refer to the degree of agreement between the index test and the reference standard for the discriminatory ability to identify a target disorder of interest in a patient. The receiver operating characteristic (ROC) curve offers a graphical display the trade-off between sensitivity and specificity at each cutoff for a diagnostic test and is useful in assigning the best cutoff for clinical use. In this end, the ROC curve analysis is a useful tool for estimating and comparing the accuracy of competing diagnostic tests. This paper reviews briefly the measures of diagnostic accuracy such as sensitivity, specificity, and area under the ROC curve (AUC) that is a summary measure for diagnostic accuracy across the spectrum of test results. In addition, the methods of creating an ROC curve in single diagnostic test with five-category discrete scale for disease classification from healthy individuals, meaningful interpretation of the AUC, and the applications of ROC methodology in clinical medicine to determine the optimal cutoff values have been discussed using a hypothetical example as an illustration.

NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION OF A CONCAVE RECEIVER OPERATING CHARACTERISTIC CURVE VIA GEOMETRIC PROGRAMMING

  • Lee, Kyeong-Eun;Lim, Johan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.523-537
    • /
    • 2011
  • A receiver operating characteristic (ROC) curve plots the true positive rate of a classier against its false positive rate, both of which are accuracy measures of the classier. The ROC curve has several interesting geometrical properties, including concavity which is a necessary condition for a classier to be optimal. In this paper, we study the nonparametric maximum likelihood estimator (NPMLE) of a concave ROC curve and its modification to reduce bias. We characterize the NPMLE as a solution to a geometric programming, a special type of a mathematical optimization problem. We find that the NPMLE is close to the convex hull of the empirical ROC curve and, thus, has smaller variance but positive bias at a given false positive rate. To reduce the bias, we propose a modification of the NPMLE which minimizes the $L_1$ distance from the empirical ROC curve. We numerically compare the finite sample performance of three estimators, the empirical ROC curve, the NMPLE, and the modified NPMLE. Finally, we apply the estimators to estimating the optimal ROC curve of the variance-threshold classier to segment a low depth of field image and to finding a diagnostic tool with multiple tests for detection of hemophilia A carrier.

Selection of markers in the framework of multivariate receiver operating characteristic curve analysis in binary classification

  • Sameera, G;Vishnu, Vardhan R
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.79-89
    • /
    • 2019
  • Classification models pertaining to receiver operating characteristic (ROC) curve analysis have been extended from univariate to multivariate setup by linearly combining available multiple markers. One such classification model is the multivariate ROC curve analysis. However, not all markers contribute in a real scenario and may mask the contribution of other markers in classifying the individuals/objects. This paper addresses this issue by developing an algorithm that helps in identifying the important markers that are significant and true contributors. The proposed variable selection framework is supported by real datasets and a simulation study, it is shown to provide insight about the individual marker's significance in providing a classifier rule/linear combination with good extent of classification.

Bayesian hierarchical model for the estimation of proper receiver operating characteristic curves using stochastic ordering

  • Jang, Eun Jin;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.205-216
    • /
    • 2019
  • Diagnostic tests in medical fields detect or diagnose a disease with results measured by continuous or discrete ordinal data. The performance of a diagnostic test is summarized using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). The diagnostic test is considered clinically useful if the outcomes in actually-positive cases are higher than actually-negative cases and the ROC curve is concave. In this study, we apply the stochastic ordering method in a Bayesian hierarchical model to estimate the proper ROC curve and AUC when the diagnostic test results are measured in discrete ordinal data. We compare the conventional binormal model and binormal model under stochastic ordering. The simulation results and real data analysis for breast cancer indicate that the binormal model under stochastic ordering can be used to estimate the proper ROC curve with a small bias even though the sample sizes were small or the sample size of actually-negative cases varied from actually-positive cases. Therefore, it is appropriate to consider the binormal model under stochastic ordering in the presence of large differences for a sample size between actually-negative and actually-positive groups.

Positive and negative predictive values by the TOC curve

  • Hong, Chong Sun;Choi, So Yeon
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.211-224
    • /
    • 2020
  • Sensitivity and specificity are popular measures described by the receiver operating characteristic (ROC) curve. There are also two other measures such as the positive predictive value (PPV) and negative predictive value (NPV); however, the PPV and NPV cannot be represented by the ROC curve. Based on the total operating characteristic (TOC) curve suggested by Pontius and Si (International Journal of Geographical Information Science, 97, 570-583, 2014), explanatory methods are proposed to geometrically describe the PPV and NPV by the TOC curve. It is found that the PPV can be regarded as the slope of the right-angled triangle connecting the origin to a certain point on the TOC curve, while 1 - NPV can be represented as the slope of the right-angled triangle connecting a certain point to the top right corner of the TOC curve. When the neutral zone exists, the PPV and 1-NPV can be described as the slopes of two other right-angled triangles of the TOC curve. Therefore, both the PPV and NPV can be estimated using the TOC curve, whether or not the neutral zone is present.

Control Chart for Constant Hazard Rate (상수형 고장률 관리도)

  • Lee, Jae-Man;Cha, Young-Joon;Hong, Yeon-Woong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.437-444
    • /
    • 1999
  • We propose control charts for constant hazard rate by using the number of failures based on the non-placement(replacement) life test. Also we study the sensitivity of the control chart from the operating characteristic curve.

  • PDF

Review for time-dependent ROC analysis under diverse survival models (생존 분석 자료에서 적용되는 시간 가변 ROC 분석에 대한 리뷰)

  • Kim, Yang-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.35-47
    • /
    • 2022
  • The receiver operating characteristic (ROC) curve was developed to quantify the classification ability of marker values (covariates) on the response variable and has been extended to survival data with diverse missing data structure. When survival data is understood as binary data (status of being alive or dead) at each time point, the ROC curve expressed at every time point results in time-dependent ROC curve and time-dependent area under curve (AUC). In particular, a follow-up study brings the change of cohort and incomplete data structures such as censoring and competing risk. In this paper, we review time-dependent ROC estimators under several contexts and perform simulation to check the performance of each estimators. We analyzed a dementia dataset to compare the prognostic power of markers.

Receiver Operating Characteristic (ROC) Curves Using Neural Network in Classification

  • Lee, Jea-Young;Lee, Yong-Won
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.911-920
    • /
    • 2004
  • We try receiver operating characteristic(ROC) curves by neural networks of logistic function. The models are shown to arise from model classification for normal (diseased) and abnormal (nondiseased) groups in medical research. A few goodness-of-fit test statistics using normality curves are discussed and the performances using neural networks of logistic function are conducted.

  • PDF

A Study of Magnetic Field Characteristic of Field coil in HTS motor (HTS 전동기용 계자코일의 자장 특성 연구)

  • 이정종;조영식;홍정표;손명환;김석환;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.47-51
    • /
    • 2002
  • In this paper, flux distribution and operating current is calculated according to the field coil change in HTS(High Temperature Superconducting) motor. In order to calculate magnetic field characteristic of the field coil. it is computed by changing the outer radius and the inner width of field coil Bio-Savart equation is used as the analysis method for the characteristic analysis of magnet. 2D and 3D FEA(Finite Element Analysis) is used for the magnetic field distribution in HTS motor The operating current is calculated by $B{\bot}$ linked With the field coil and $I_c-B curve of superconductor.

Relationship between Cavitation Incipient and NPSH Characteristic for Inverter Drive Centrifugal Pumps

  • Rakibuzzaman, Md;Suh, Sang-Ho;Kim, Hyoung-Ho;Jung, Young-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.76-80
    • /
    • 2015
  • The purpose of this study is to understand the cavitation phenomena in centrifugal pumps through computational fluid dynamics method. NPSH characteristic curve is measured from different flow operating conditions. Steady state, liquid-vapor homogeneous method with two equations transport turbulence model is employed to estimate the NPSH curve in centrifugal pumps. The Rayleigh-Plesset cavitation model is adapted as source term for inter-phase mass transfer in order to understand cavitation phenomena in centrifugal pumps. The cavitation incipient curve is clearly estimated at different flows operating conditions. A relationship is made between cavitation incipient and NPSH curve. Also the effects on water vapor volume fraction and pressure load distributions on the impeller blade are also described.