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Abstract

We try receiver operating characteristic(ROC) curves by neural 
networks of logistic function. The models are shown to arise from model 
classification for normal (diseased) and abnormal (nondiseased) groups in 
medical research. A few goodness-of-fit test statistics using normality 
curves are discussed and the performances using neural networks of 
logistic function are conducted. 
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1. Introduction

A logistic regression analysis may belong to one of many techniques for 

classification that divide data into the normal group(diseased) and the abnormal 

group(nondiseased) in medical research. Specially, in neural networks it is easy to 

accept but difficult to use the results from a classification because the analysis 

process is greatly complicated and hidden. Using the special quality of the 

activation function concerned deeply in output result of the neural network 

analysis, we apply the results of neural networks for a classification in data 

mining to the ROC logistic modelling. 

On the other hand, there are graphical methods for doing normality test such as 

Q-Q (quantile-quantile) plot and P-P(probability-probability) plot. Wilk and 
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Granadesikan (1968) introduced probability plotting methods for the analysis of 

data and normality test. Mage(1982) introduced some graphical methods for 

normality test. Lee, Woo and Rhee (1998) proposed a new graphical method named 

a transformed quantile-quantile plot to test for normality. However graphical 

method is less formal and the use of it alone could lead to a spurious conclusion. 

To solve this kind of problem, Lee and Rhee(1999) proposed the goodness-of-fit 

test for normality through ROC analysis. They obtained the estimated sample 

variances, S
2
QQ
 and S

2
PP
 from residuals of the transformed Q-Q and the 

transformed P-P plots respectively. Also the comparisons with Shapiro and Wilk's 

W statistic (1965), were conducted by Monte Carlo simulations. This paper is 

organized as follows. Section 2 describes two statistics, the estimated sample 

variances, S2QQ  and S
2
PP
 from P-P and Q-Q plots, respectively, ROC curves and 

their statistical performances. Section 3 considers a method of neural networks for 

classification in data mining and suggests a ROC curves for normal(diseased) and 

abnormal(nondiseased) groups by neural networks. Further, a simulation studies 

and comparisons are discussed. The final section is devoted to summary.

2. The Estimated Sample Variances of Q-Q, P-P Plots and 

ROC Curves

The Q-Q(quantile-quantile) plot and P-P(probability-probability) plots are 

well-known graphical methods for normality test. The goodness-of-fit test of 

normality by ROC curves are discussed by Lee & Rhee(1999). That is, the 

estimated sample variance, S
2
QQ
, from residuals of the TQQ plot. 

S
2
QQ =

1
n-1 ∑

n

i=1{Φ
-1( i- c
n-2c+1 )-x i:n}

2

=
1
n-1

Ln ,   c∈[0, 1 ) ,

where Ln = ∑
n

i=1{Φ
- 1( i- c
n-2c+1 )- x i:n}

2

 with c = 0 (DeWet and Venter, 

1972). and Φ  is a cumulative function of standard normal distribution.

The estimated sample variance, S
2
PP
, from residuals of the transformed TPP plot 

is obtained by

S2 PP=
1
n-1 ∑

n

i=1{ (
i
n
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n+1
n
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Receiver operating characteristic(ROC) curve analysis was developed to 

summarize data from signal detection experiments in psychophysics(Green and 

Swets,1966). Recently, ROC curves are used to evaluate diagnostic tests when test 

results are not binary. In biomedical applications, the two states are often referred 

to as diseased and nondiseased, or D+ and D- for short. Central to this analysis 

is the ROC curve, which displays diagnostic accuracy as a series of pairs of 

performance measures. Each pair consists of a true positive fraction(TPF) and the 

corresponding false positive fraction(FPF) for a given definition of test positivity. 

In the medical literature, the term TPF is called sensitivity and the complement of 

the FPF is called specificity. They are simply defined as 

    
    

Number of True Positive DecisionsSensitivity
Number of Actually Positive Cases

≡

    
    

Number of True Negative DecisionsSpecificity
Number of Actually Negative Cases

≡

The ROC curve is to plot in the series of the sensitivity(TPF) versus 

[1-specificity(FPF)] pairs. The area under the population ROC curve represents the 

probability that the resulting values will be in the correct order when the variable 

is observed for a randomly selected individual from the abnormal population and 

for a randomly selected individual from the normal population. So a more accurate 

test will be located on an ROC curve closer to the left top corner than a less 

accurate one. And accuracy is defined by 

    
   

    
                

   

   
                

Number of Total Correct DecisionsAccuracy
Number of Total Cases

Fraction of the Study Population
Sensitivity

that is Actually Positive

Fraction of the
Specificity

≡

 
= × 

 

+ ×
 

   
Study Population

that is Actually Negative
 
 
 

Let D  be a binary indicator of normal status such as 

1,                      .
0,               .

diseased
D

nondiseased


= 


and let Y denote the result of a nonbinary diagnostic test. For some threshold y , 
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test results greater than y , are assumed to be indicative of normal. Then the 

sensitivity and specificity associated with this decision criterion can be written as, 

respectively, 

Sen(y)=Pr [Y≥y |D=1]

Spec(y)=Pr [Y < y |D=0]

Suppose that a sample of N individuals undergo a test for predicting an event 

of interest or determining presence or absence of a medical condition and that the 

test is based on a continuous-valued diagnostic variable. We assume that higher 

values of the test variable are associated with the event of interest for 

convenience. 

For the goodness-of-fit test of normality by ROC areas, we use these three 

statistics W, S
2
QQ
 and S

2
PP
. A simulation study is conducted for various sample 

sizes where we consider alternative hypothesis exponential distribution (skewed 

distribution).

Table 2.1. Statistical Analysis between ROC Areas by W, S 2PP  and S
2
QQ
 statistics

Sample 

Size

W vs S2QQ W vs S 2PP S2QQ  vs S
2
PP

Diff
1)

P-value Diff
2)

P-value Diff
3)

P-value

10 0.017 <0.001 0.054 <0.001 0.037 <0.001

20 0.012 <0.001 0.045 <0.001 0.033 <0.001

50 <0.001 0.093 0.003 <0.001 0.003 <0.001

1) Diff = ROC Area of W - ROC Area of S 2QQ , 2) Diff = ROC Area of W - ROC Area of 

S2PP , 3) Diff = ROC Area of S
2
QQ
 - ROC Area of S2PP

That is, we generate N=2,000 random W, S
2
QQ
, and S

2
PP
 samples for each 

sample size n=10, 20, and 50. Then, Then, we gather N=4,000 random samples and 

order descending the total of random samples. To change the threshold y , we get 

some sensitivities and specificities. The empirical ROC curve is a plot of sens 

versus [1- spec]. So we apply those samples for the ROC curve and calculate the 

area under ROC curve. The results are summarized in Table 2.1 (Lee and Rhee, 

1999). 

Comparing ROC area and accuracy results, we see that W-statistic is typically 

superior to S2QQ  and S
2
PP
 in detecting the skewed distribution (exponential 

distribution) for all sample sizes. Comparing S2QQ  and S
2
PP
, S2QQ  dominates S

2
PP
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for all sample sizes. Of course, all W, S2QQ  and S
2
PP
 statistics have approximate 

100 % ROC areas for a moderate or large sample sizes such as n =50. The 

results indicate W-statistic of three is the most suitable for testing normality, but 

S2QQ  statistic is also a comparative statistic.

3. ROC Curves by Neural Networks using 

Logistic Function of Sigmoidal Function

We consider only the classification problem about two classes such as the 

normal(diseased) group CN  and the abnormal(nondiseased) group CA  in medical 

research.  Let the training data set be defined by

T={ (x(n),d(n)) |n=1,2,…,N}                    (3.1)

where x (n )  is a m-dimensional input vector for item n  and N is the total 

number of cases or items used in this analysis. And d (n )  is a desired response 

or target output for item n such as

d (n) =




1, x (n) CA

0, x (n) CN
                       (3.2)

In neural networks, the output of each node is made by the activation function. 

Specially, the model of each neuron in multilayer perceptron has a nonlinear and 

smooth activation function. A commonly used form of sigmoidal nonlinearity 

function is defined by a logistic function (Haykin,1999) such as

Φ(v)=
1

1+exp - av
                           (3.3)

where a  is the slope parameter of the sigmoid function. 
In Figure 3.1, by varying the parameter a , sigmoid functions of different slopes 

are illustrated. The results of the activation function from the output layer (Figure 

3.1) with a single node of a multilayer perceptron with the error back-propagation 

algorithm are often called by scores and denoted by O(n), n= 1,2,…,N  

(Haykin, 1999). We calculate these scores using logistic function of sigmoidal 

function. 

H ji= f 1(b 0+w i×Z x i) ,  i=1,2,…,N,  j=1,2,…,k
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Where f 1  is a logistic function, Hji  is a score of j th hidden layer and i th 

observation, b 0  is a bias, wi  is a weight of i th observation and Zxi
 is a 

normality of observation. We can change the number of hidden layers. Then, we 

take scores by

O(n)= ∑
k

j= 1
f 2(b 1+w jH ji) ,  i=1,2,…,N,  j=1,2,…,k

Where f2  is a logistic function, b1  is a bias and wj  is a weight of j th hidden 

layer.

Figure 3.1. Sigmoid activation function (Haykin,1999)

These scores are characterized by 

d̂ (n) =




1, x (n) CA

0, x (n) CN
                        (3.4)

where d̂ (n )  is the result of classification for item n and c is a constant. In the 

multilayer perceptron with the activation function which is equation (3.3), the 

range of O (n )  is [0, 1] and the constant 5.0=c . Then the classification rules are 

following:

① If a score O (n )  is great than or equal to 0.5, then the item n  is classed to 

the abnormal class CA. 

② If a score O (n )  is less than 0.5, then the item n is classed to the normal 

class CN .

The scores have been used to classify by the classification rules(① and ②) 

only. 

In statistical viewpoint, a final output d̂ (n ) is the estimation of the desired 

response d (n ) .  That is, the event such as d̂ (n )=1 is equivalent to O (n ) c . 

So, the probability form is formulated by
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 P [d̂ (n ) = 1 ] =  P [O (n ) c ]                       (3.5)

and

 P [d̂ (n ) = 0 ] =  P [O (n ) < c ]                       (3.6)

From (3.5) and (3.6), we define the survival distributions, which are defined 

sensitivity and 1-specificity respectively, of X of diseased and nondiseased 

populations such as

FD (x ) = P [X x|d = 1 ]                           (3.7)
and

F
D
(x ) = P [X x|d = 0 ]                           (3.8)

The ROC curves by sensitivity(FD (x )) versus 1-specificity(FD
(x ) ) are tried 

and ROC Area by Neural Network Score were showed in Table 3.1. Also, ROC 

curve is defined by Pepe(1997) such as  

ROC (t ) = FD (x ) = FD (F
− 1

D
(t )), t (0,  1 )              (3.9)

where t is the false positive rate, that is, t = F
D
(x )  for all nonparametric 

areas(McNeil and Hanley, 1984) under ROC curves.

Table 3.1 ROC Areas by Neural Network Score

Sample 

Size

Test 

Statistic

Best Cut-off

ROC Area Sen. Spec. Accuracy

10

W 0.828 0.759 0.744 0.7515

S2PP 0.775 0.642 0.774 0.708

S 2QQ 0.814 0.651 0.826 0.7385

20

W 0.964 0.879 0.924 0.9015

S2PP 0.909 0.816 0.844 0.83

S 2QQ 0.951 0.871 0.897 0.884

30

W 0.995 0.968 0.969 0.9685

S2PP 0.971 0.924 0.918 0.921

S 2QQ 0.991 0.964 0.954 0.959

50

W 1 0.995 0.989 0.992

S2PP 0.995 0.974 0.96 0.967

S 2QQ 0.999 0.984 0.988 0.986
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The results in Table 3.1, indicate that areas under ROC curves (ROC Area) for 

three normality statistics from obtained scores, O (n ) . Comparing ROC area and 

accuracy results by neural networks, we see that W-statistic is typically superior 

to S2QQ  and S
2
PP
 in detecting the skewed distribution (exponential distribution) for 

all sample sizes. Of course, all W, S
2
QQ
 and S

2
PP
 statistics have approximate 100 

% ROC areas for a moderate or large sample sizes such as n =50. The results of 

neural networks indicate W-statistic is the more suitable for testing normality, but 

S
2
QQ
 statistic is also a comparative statistic.

Figure 3.2. ROC Curve of W statistic by 
Neural Network at size 30

      

Figure 3.3. ROC Curve of S 2
PP  statistic 

by Neural Network at size 30

Figure 3.4. ROC Curve of S 2QQ  statistic 

by Neural Network at size 30

Through figures 3.2 to 3.4 represent estimated ROC curves of three normality 
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statistics by neural network methods. Through these figures, we obtain that the 

ROC curves for Shapiro-Wilk W statistic are greater than others. But Q-Q plot's 

is also comparative. These results are discussed in Table 3.1. also. 

4. Conclusions

ROC curves for normal and abnormal classifications is proposed using neural 

networks of data mining. By using two statistics S 2QQ  and S
2
PP  of two graphical 

techniques(P-P and Q-Q plots) for normality, we compared with numerical 

technique(Shapiro-Wilk's W statistic). The results in Table 3.1, indicate that 

normality statistics W and S 2QQ  are superior to S
2
PP  for all samples, but W and 

S 2QQ  are comparative. So we may conclude that Q-Q plot's S
2
QQ  is as powerful as 

Shapiro-Wilk's W for the normality test.

Through Figures 3.2 to 3.4, we evaluated ROC curves of three test statistics for 

normality by neural network method. Further, ROC curves for Shapiro-Wilk's W 

statistic are greater than the others. But Q-Q plot's is also comparative. We 

conclude that ROC curves for Shapiro-Wilk's W statistic of neural network are 

obtained for a classification that divides data into the normal group(diseased) and 

the abnormal group(nondiseased) in medical research. Also the goodness-of-fit 

performances for normality statistics have been discussed.
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