• Title/Summary/Keyword: OpenAI(Open Artificial Intelligence)

Search Result 88, Processing Time 0.022 seconds

A Methodology for Using ChatGPT to Improve BIM-based Design Data Evaluation System (BIM기반 설계데이터 평가 시스템 개선을 위한 ChatGPT활용 방법론)

  • Yu, Eun-Sang;Kim, Gu-Taek;Ahn, Yong-Han;Choi, Jung-Sik
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.25-34
    • /
    • 2024
  • This study proposes a new methodology to increase the flexibility and efficiency of the design data evaluation system by combining Building Information Modeling (BIM) technology in the architectural industry, OpenAI's interactive artificial intelligence, and ChatGPT. BIM technology plays an important role in digitally modeling and managing architectural information. Since architectural information is included, research and development are underway to review and evaluate BIM data according to conditions through program development. However, in the process of reviewing BIM design data, if the review criteria or evaluation criteria according to design change occur frequently, it is necessary to update the program anew. In order for designers or reviewers to apply the changed criteria, requesting a program developer will delay time. This problem was studied by using ChatGPT to modify and update the design data evaluation program code in real time. In this study, it is aimed to improve the changing standards and accuracy by enabling programming non-professionals to change the design regulations and calculation standards of the BIM evaluation program system using ChatGPT. In this study, in the BIM-based design certification automation evaluation program, a program in which the automation evaluation method is being studied based on the design certification evaluation manual was first used. In the design certification automation evaluation program, the programming non-majors checked the automation evaluation code by linking ChatGPT, and the changed calculation criteria were created and modified interactively. As a result of the evaluation, the change in the calculation standard was explained to ChatGPT and the applied result was confirmed.

Developing the Deep Text-to-Ontology Generator based on Neuro-Symbolic Architecture (뉴로-심볼릭 구조 기반 온톨로지 생성기 제안)

  • Hyeoung-Cheol Park;Eun-Su Yun;Min-Jeong Kim;Hui-Jae Bae;Yu-Jin Shin;Jee-Hang Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.672-674
    • /
    • 2023
  • 본 논문은 뉴로-심볼릭 구조를 바탕으로 일반 텍스트로부터 온톨로지 생성이 가능한 심층 신경망 기반 온톨로지 추출기를 제안한다. 온톨로지 추출 단계를 (i) 온톨로지 학습 및 (ii) 온톨로지 생성의 2 단계로 상정, (i) 일반 텍스트로부터 문장 구조 및 논리적 관계를 학습하는 트랜스포머 기반 심층 생성 신경망 출력을 이용하여 (ii) 계층적으로 결합한 심볼릭 추론기로 온톨로지를 생성하는 뉴로-심볼릭 구조 온톨로지 추출기를 구현하였다. 1800 개 훈련 집합으로 학습 후 200 개 테스트 집합으로 평가한 결과, 정확도 91.9%, Precision 100%, Recall 99.1%로 비교 모델 OpenIE 의 성능에 비해서 각각 83.8%, 1.8%, 3.5% 개선된 것을 확인하였다. 정성적 품질에 있어서, 복잡한 문장 (예: 관계대명사, 접속사, 중첩 구조)에서도 비교 모델에 비해 더 정밀한 온톨로지 생성 결과를 보였다.

Use of ChatGPT in college mathematics education (대학수학교육에서의 챗GPT 활용과 사례)

  • Sang-Gu Lee;Doyoung Park;Jae Yoon Lee;Dong Sun Lim;Jae Hwa Lee
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • This study described the utilization of ChatGPT in teaching and students' learning processes for the course "Introductory Mathematics for Artificial Intelligence (Math4AI)" at 'S' University. We developed a customized ChatGPT and presented a learning model in which students supplement their knowledge of the topic at hand by utilizing this model. More specifically, first, students learn the concepts and questions of the course textbook by themselves. Then, for any question they are unsure of, students may submit any questions (keywords or open problem numbers from the textbook) to our own ChatGPT at https://math4ai.solgitmath.com/ to get help. Notably, we optimized ChatGPT and minimized inaccurate information by fully utilizing various types of data related to the subject, such as textbooks, labs, discussion records, and codes at http://matrix.skku.ac.kr/Math4AI-ChatGPT/. In this model, when students have questions while studying the textbook by themselves, they can ask mathematical concepts, keywords, theorems, examples, and problems in natural language through the ChatGPT interface. Our customized ChatGPT then provides the relevant terms, concepts, and sample answers based on previous students' discussions and/or samples of Python or R code that have been used in the discussion. Furthermore, by providing students with real-time, optimized advice based on their level, we can provide personalized education not only for the Math4AI course, but also for any other courses in college math education. The present study, which incorporates our ChatGPT model into the teaching and learning process in the course, shows promising applicability of AI technology to other college math courses (for instance, calculus, linear algebra, discrete mathematics, engineering mathematics, and basic statistics) and in K-12 math education as well as the Lifespan Learning and Continuing Education.

KOMUChat: Korean Online Community Dialogue Dataset for AI Learning (KOMUChat : 인공지능 학습을 위한 온라인 커뮤니티 대화 데이터셋 연구)

  • YongSang Yoo;MinHwa Jung;SeungMin Lee;Min Song
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.219-240
    • /
    • 2023
  • Conversational AI which allows users to interact with satisfaction is a long-standing research topic. To develop conversational AI, it is necessary to build training data that reflects real conversations between people, but current Korean datasets are not in question-answer format or use honorifics, making it difficult for users to feel closeness. In this paper, we propose a conversation dataset (KOMUChat) consisting of 30,767 question-answer sentence pairs collected from online communities. The question-answer pairs were collected from post titles and first comments of love and relationship counsel boards used by men and women. In addition, we removed abuse records through automatic and manual cleansing to build high quality dataset. To verify the validity of KOMUChat, we compared and analyzed the result of generative language model learning KOMUChat and benchmark dataset. The results showed that our dataset outperformed the benchmark dataset in terms of answer appropriateness, user satisfaction, and fulfillment of conversational AI goals. The dataset is the largest open-source single turn text data presented so far and it has the significance of building a more friendly Korean dataset by reflecting the text styles of the online community.

Data Processing and Visualization Method for Retrospective Data Analysis and Research Using Patient Vital Signs (환자의 활력 징후를 이용한 후향적 데이터의 분석과 연구를 위한 데이터 가공 및 시각화 방법)

  • Kim, Su Min;Yoon, Ji Young
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.175-185
    • /
    • 2021
  • Purpose: Vital sign are used to help assess the general physical health of a person, give clues to possible diseases, and show progress toward recovery. Researchers are using vital sign data and AI(artificial intelligence) to manage a variety of diseases and predict mortality. In order to analyze vital sign data using AI, it is important to select and extract vital sign data suitable for research purposes. Methods: We developed a method to visualize vital sign and early warning scores by processing retrospective vital sign data collected from EMR(electronic medical records) and patient monitoring devices. The vital sign data used for development were obtained using the open EMR big data MIMIC-III and the wearable patient monitoring device(CareTaker). Data processing and visualization were developed using Python. We used the development results with machine learning to process the prediction of mortality in ICU patients. Results: We calculated NEWS(National Early Warning Score) to understand the patient's condition. Vital sign data with different measurement times and frequencies were sampled at equal time intervals, and missing data were interpolated to reconstruct data. The normal and abnormal states of vital sign were visualized as color-coded graphs. Mortality prediction result with processed data and machine learning was AUC of 0.892. Conclusion: This visualization method will help researchers to easily understand a patient's vital sign status over time and extract the necessary data.

A System for Determining the Growth Stage of Fruit Tree Using a Deep Learning-Based Object Detection Model (딥러닝 기반의 객체 탐지 모델을 활용한 과수 생육 단계 판별 시스템)

  • Bang, Ji-Hyeon;Park, Jun;Park, Sung-Wook;Kim, Jun-Yung;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.9-18
    • /
    • 2022
  • Recently, research and system using AI is rapidly increasing in various fields. Smart farm using artificial intelligence and information communication technology is also being studied in agriculture. In addition, data-based precision agriculture is being commercialized by convergence various advanced technology such as autonomous driving, satellites, and big data. In Korea, the number of commercialization cases of facility agriculture among smart agriculture is increasing. However, research and investment are being biased in the field of facility agriculture. The gap between research and investment in facility agriculture and open-air agriculture continues to increase. The fields of fruit trees and plant factories have low research and investment. There is a problem that the big data collection and utilization system is insufficient. In this paper, we are proposed the system for determining the fruit tree growth stage using a deep learning-based object detection model. The system was proposed as a hybrid app for use in agricultural sites. In addition, we are implemented an object detection function for the fruit tree growth stage determine.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF

Visual Verb and ActionNet Database for Semantic Visual Understanding (동영상 시맨틱 이해를 위한 시각 동사 도출 및 액션넷 데이터베이스 구축)

  • Bae, Changseok;Kim, Bo Kyeong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.19-30
    • /
    • 2018
  • Visual information understanding is known as one of the most difficult and challenging problems in the realization of machine intelligence. This paper proposes deriving visual verb and construction of ActionNet database as a video database for video semantic understanding. Even though development AI (artificial intelligence) algorithms have contributed to the large part of modern advances in AI technologies, huge amount of database for algorithm development and test plays a great role as well. As the performance of object recognition algorithms in still images are surpassing human's ability, research interests shifting to semantic understanding of video contents. This paper proposes candidates of visual verb requiring in the construction of ActionNet as a learning and test database for video understanding. In order to this, we first investigate verb taxonomy in linguistics, and then propose candidates of visual verb from video description database and frequency of verbs. Based on the derived visual verb candidates, we have defined and constructed ActionNet schema and database. According to expanding usability of ActionNet database on open environment, we expect to contribute in the development of video understanding technologies.

Quality management direction in the 4th industrial revolution era (제4차 산업혁명시대에서의 품질경영 방향)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.5 no.4
    • /
    • pp.1-13
    • /
    • 2020
  • Since the 4th industrial revolution was thrown into the world at the Davos World Economic Forum in January 2016, the world has been undergoing major social and economic changes. In this study, the direction of quality management in the 4th industrial revolution era was examined. First, in all the major countries the industrial structural changes and smart business models were confirmed due to the convergence of new ICT such as IoT, robotics, 3D printing, big data, and AI with the existing technologies and industries. Second, we found that although the core technology level of the 4th industrial revolution in Korea is not as good as that of advanced countries, we have been working on expanding smart production methods and creating new industries by utilizing new ICT. Finally, it was confirmed that quality management is a real-time implementation of new ICT that reflects the needs of the market in real time based on big data from the planning and design stage of products or services.

An Approach of Cognitive Health Advisor Model for Untact Technology Environment (언택트 기술 환경에서의 지능형 헬스 어드바이저 모델 접근 방안)

  • Hwang, Tae-Ho;Lee, Kang-Yoon
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.139-145
    • /
    • 2020
  • In the era of the 4th Industrial Revolution, the use of information based on AI APIs has a great influence on industry and life. In particular, the use of artificial intelligence data in the medical field will have many changes and effects on society. This paper is to study the necessary components to implement the "Cognitive Health Advisor model (CHA model)" and to implement the "CHA model using chatbot" based on this. It uses the open Cognitive chatbot to analyze and analyze the health status of users changing in their daily lives. The user's health information analyzed by the biometric sensor and chatbot consultation delivers the information to the user through the chatbot. And it implements a cognitive health advisor model that provides educational information for users' health promotion. Through this implementation, it intends to confirm the possibility of future use and to suggest research directions.