• Title/Summary/Keyword: Open-circuit voltage

Search Result 609, Processing Time 0.023 seconds

A study on the method of manufacturing $TiO_2$ photoelectrode for improving the photocurrent of dye-sensitized solar cells (염료감응형 태양전지 광전류 향상을 위한 $TiO_2$ 광전극 제작방법에 관한 연구)

  • Baek, Hyung-Ryul;Han, Zhen-Ji;Park, Kyung-Hee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.354-355
    • /
    • 2006
  • We manufactured photoelectrode of dye-sensitized solar cells (DSC) by using three methods such as squeeze method, spray method, and combination method (squeeze method first, spray method second). We examined how the morphology of an electrode's surface, the pore between particles, and condensation have an effect on an open-circuit voltage, photocurrent, fill factor, and energy conversion efficiency. Open-circuit voltage of dye-sensitized solar cells manufactured by using three methods is about 0.66V when the photoelectrode of the three DSCs is about $5{\mu}m$ thick. Photocurrent and fill factor and conversion efficiency of DSC manufactured by using squeeze method is 18.5 and 34 and 7.8, respectively. Photocurrent and fill factor and conversion efficiency of DSC manufactured by using spray method is 3.62 and 62 and 2.8, respectively. Photocurrent and fill factor and conversion efficiency of DSC manufactured by using combination method is 10.7 and 46 and 5.9, respectively. In conclusion, we find that the combination method is better than the other two methods in such respects as energy conversion efficiency and fill factor.

  • PDF

Degradation diagnosis of parallel-connected lithium-ion battery cells via non-constructive electrochemical approach (병렬 연결된 리튬이온전지 셀의 비파괴 전기화학적 열화상태 진단)

  • Lee, Garam;Jeong, Jiyoon;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.4
    • /
    • pp.231-235
    • /
    • 2022
  • As environmental pollution becomes more serious, the demand for electric vehicles (EVs) and lithium-ion batteries for electric vehicles is rapidly increasing worldwide. Accordingly, the amount of waste batteries is also increasing, and a technology for recycling and reusing them is required. In order to reuse a used battery, it is necessary to non-destructively diagnose the deterioration condition of the battery. Therefore, in this study, we investigate the diagnosis of degradation for parallel-connected lithium-ion battery cells through non-constructive electrochemical approach. As the number of parallel-connected cells increased, in addition to linear degradation, abrupt step-like degradation occurred, which is attributed to the predominant degradation of specific cells. In addition, it is confirmed that deteriorated cells among multiple cells can be distinguished through a simple measurement of open circuit voltage (OCV).

Electrochemical Evaluation of Etching Characteristics of Copper Etchant in PCB Etching (PCB 구리 에칭 용액의 에칭 특성에 대한 전기화학적 고찰)

  • Lee, Seo-Hyang;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.77-82
    • /
    • 2022
  • During etching process of PCB, the electroplated copper line and seed layer copper have different etching rates and it caused the over etching of copper line as well as undercut of lines. In this research, the effects of etchants composition on copper etching characteristics were investigated. The optimum concentration of hydrogen peroxide and sulfuric acid of etchants were obtained using polarization and OCV (open circuit voltage) analysis for both rolled copper and electroplated copper. The inhibiting effects of different inhibitors were investigated using OCV and ZRA (zero resistance ammeter) analysis. The galvanic current between electroplated copper and seed layer copper were measured using ZRA method. Inhibitors for least galvanic current could be chosen based on galvanic coupling in ZRA analysis.

Fault Diagnosis for 3-Phase Diode Rectifier using Harmonic Ripples of DC Link Voltage (직류단 전압의 고조파 맥동 검출을 이용한 3상 다이오드 정류기의 고장 진단)

  • Park, Je-Wook;Baek, Seong-Won;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.457-465
    • /
    • 2011
  • The fault analysis and detecting algorithm for a 3 phase diode rectifier is proposed. The 3 phase dioderectifier is used for the AC power rectifier of the PWM inverter. The input power or diode faults cause theripples of the DC voltage, degradation of the control performance and life shortening of the DC link capacitor.In this paper, the ripple of the DC voltage is mathematically analyzed for the earth fault of input power andopen circuit fault of the diode, respectively. The fault detection and type of fault can be obtained by comparingthe average DC voltage and the instant DC voltage which is sampled with 6 times of grid frequency. Theproposed method can be easily applicable and doesn't require additional circuit. The experimental and simulationresults are presented to verify the validity of the proposed method.

A Fault Diagnosis Method in Cascaded H-bridge Multilevel Inverter Using Output Current Analysis

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2278-2288
    • /
    • 2017
  • Multilevel converter topologies are widely used in many applications. The cascaded H-bridge multilevel inverter (CHBMI), which is one of many multilevel converter topologies, has been introduced as a useful topology in high and medium power. However, it has a drawback to require a lot of switches. Therefore, the reliability of CHBMI is important factor for analyzing the performance. This paper presents a simple switch fault diagnosis method for single-phase CHBMI. There are two types of switch faults: open-fault and short-fault. In the open-fault, the body diode of faulty switch provides a freewheeling current path. However, when the short-fault occurs, the distortion of output current is different from that of the open-fault because it has an unavailable freewheeling current flow path due to a disconnection of fuse. The fault diagnosis method is based on the zero current time analysis according to zero-voltage switching states. Using the proposed method, it is possible to detect the location of faulty switch accurately. The PSIM simulation and experimental results show the effectiveness of proposed switch fault diagnosis method.

Two Mode Maximum Power Point Tracking for Photovoltaic System

  • Limsakul, Chamnan;Ukakimaphun, Prapas;Prapanavarat, Cherdchai;Chenvidhya, Dhirayut
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.143-148
    • /
    • 2004
  • This paper presents the two modes for maximum power point tracking of the photovoltaic system. The method combines the merits of the two methods consisting of the open circuit method and the three point weight comparison method. The maximum point found by this method is exactly than by the open circuit method. By the simulation results, the actual maximum point can be found that is better than the Perturb and Observe (P&O) method or the three point weight method only one method, especially, in the case of non regular pattern of Power-Voltage (P-V) curve.

  • PDF

A New Optimal AVR Parameter Tuning Method Using On-Line Excitation Control System Model with SQP Method (온라인 여자제어시스템 모델과 SQP법을 이용한 AVR의 파라미터 튜닝 방법에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.118-126
    • /
    • 2002
  • AVR parameter tuning for voltage control of generators has generally been done with the off-line open-circuit model of the synchronous generator. When the generator is connected on-line and operating with load the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning for on line conditions using SQP(Sequential Quadratic Programming) meshed with frequency response characteristics of linearized on-line system model. As the proposed method uses the un - line system model the tuned parameter sets show more optimal behavior in the on-line operating conditions. furthermore, as this method considers the performance indices that are needed for stable operation as constraints, AVR parameter sets that are tuned by this method could guarantee the stable performance, too.

Control-to-output Transfer Function of the Open-loop Step-up Converter in CCM Operation

  • Wang, Faqiang;Ma, Xikui
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1562-1568
    • /
    • 2014
  • Based on the average method and the geometrical technique to calculate the average value, the average model of the open-loop step-up converter in CCM operation is established. The DC equilibrium point and corresponding small signal model is derived. The control-to-output transfer function is presented and analyzed. The theoretical analysis and PSIM simulations shows that the control-to-output transfer function includes not only the DC input voltage and the DC duty cycle, but also the two inductors, the two energy-transferring capacitors, the switching frequency and the load. Finally, the hardware circuit is designed, and the circuit experimental results are given to confirm the effectiveness of theoretical derivations and analysis.

Power Supply for USN by Using SMD Type Solar Cell Array (SMD 타입 태양전지 어레이를 이용한 USN용 전원 공급 장치)

  • Kim, Seong-Il
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.22-25
    • /
    • 2009
  • For increasing the output voltage, six SMD(surface mount device) type AlGaAs/GaAs solar cells were connected in series. The electrical properties of the array were measured and compared with one sun (100 mW/$cm^2$) and indoor light (480 lux) conditions. Under one sun condition, output power was 21.57 mW and it was $14.67\;{\mu}W$ under indoor light condition. Under the indoor light condition, the intensity of the light is very low compared to one sun condition. Thus the Voc(open circuit voltage) and Isc (short circuit current) of the sample under indoor light condition decreased very much compared to that of under the one sun condition. This kind of solar cell power supply can be used as a power source for ubiquitous sensor network (USN).

  • PDF

100W Class Low Profile DC-DC Converter with Constant Current Control (정전류 제어가 가능한 100W급 초박형 DC-DC 컨버터)

  • Yon Je-Sun;Ahn Tae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.713-717
    • /
    • 2004
  • This is a thesis that a quarter-brick size of 100W class open-frame type on board power module comprising telecommunication application is reported. The input voltage is established between 36 and 75 in range in order for power module to be utilized for the telecommunication application, and output were set at 3.3V and 30A. A number of parts used for transformer, inductor, and hit sink are composed of PCB in order for DC-DC converter to be lowered below 8 mm. A constant current control circuit was annexed to the system as well as basic protection prototypes such as over-voltage, over-current, and over-temperature were well considered to enhance more credibility, and were tested. As a result, high circuit performance and credibility turned out to be significant.

  • PDF