• Title/Summary/Keyword: Open hole compressive strength

Search Result 10, Processing Time 0.021 seconds

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J.;Kong, C.;Soutis, C.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.129-134
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests, CAI strength and open hole compressive strength tests using 3mm thick composite plates ($[45/-45/0/90]_{3s}$ - IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels (between 5.4 J and 18.7 J) fallow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. From the CAI strength and open hole compressive strength tests, it is identified that the failure behaviour of the specimens was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths are in good agreement with the measured open hole compressive strengths, considering the impact damage site as an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

  • PDF

Size Effects on the Compressive Strength of Composite Plates with an Open Hole (홀을 갖는 복합재 적층판의 압축강도에 대한 크기 효과에 관한 연구)

  • ;;;C. Soutis
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.42-48
    • /
    • 2001
  • Over two decades, many researchers have performed studies on strength size effects in composite laminates under tensile and flexural loads. It is well known that there is a tendency for the strength of fibre-reinforced composites to decrease with increasing specimen size. Under compressive load, however, little work has been done on the effect of specimen size to failure strength. This is due to the fact that compressive testing of composite is very difficult. In this paper, the effect of the test specimen size on the compressive strength of composites containing open hole was considered using T300/924C, $>[45/-45/0/90]_{3S}$. For sizing test specimens, the in-plane scaling method is used i.e., the change of two- dimensional specimen area in specimen width and gauge length. The results clearly show that there is a hole size effect in the finite width plates. In addition, the specimens which have the same a/W(hole diameter/specimen width) exhibit a tendency of size effect. In contrast, test results of the unnotched specimens did not show a clear strength size effect.

  • PDF

Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device (T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향)

  • ;;;C. Soutis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

Effect of Filled Hole on Strength Behavior of CFRP Composites at Cold Temperature Dry and Elevated Temperature Wet (저온건조($-55^{\circ}C$) 및 고온다습 조건($108.3^{\circ}C$)의 기계적 체결 홀이 탄소섬유강화 복합재의 강도 특성에 미치는 영향 연구)

  • Kim, Hyo-Jin
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.82-88
    • /
    • 2009
  • The effect of open and filled holes on the strength behavior of carbon fiber reinforced polymeric (CFRP) composites was investigated. The strength was measured at room temperature dry, cold temperature dry, $-55^{\circ}C$, and elevated temperature wet, $108.3^{\circ}C$ on several different laminate configurations. Based on the experimental data presented, it is shown that the filled hole tensile strength is larger than that of open hole by reducing damage around the hole due to the constraint imposed by the fastener. The tensile strength at cold temperature dry, $-55^{\circ}C$ is increased with the brittleness by the thermal expansion coefficient of fiber and matrix. The compressive strength at elevated temperature wet, $108.3^{\circ}C$ is decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

Compressive Strength Prediction of Composite Laminates Containing Circular Holes (원공이 있는 복합재 적층판의 압축강도 예측)

  • Kim, Sung Joon;Park, Sehoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.549-555
    • /
    • 2021
  • Open hole strength of composite laminates is often used as the design allowable strength for designing composite aircraft structures, particularly those structures subjected to impact loading. Generally, the degradation of strength due to a barely visible impact damage (BVID) is assumed as the strength of 6.0 mm hole diameter in 24.0 mm width specimen. In this study, the residual strength static tests of composite laminates containing circular holes have been performed to investigate the effects of fiber orientation structure on open hole strength. The point stress criterion using a characteristic length is used to predict the open hole strength. The finite element analysis has been used to validate the analytical method. From the test results, it is shown that the characteristic length is related to the percentage of 0°, ±45° and 90° plies of the laminate. And regression analysis has performed to determine the characteristic length and strength of no hole specimens on the arbitrary layup pattern.

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J;Kong, C;Soutis C.
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.66-73
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests. CAI strength and open hole compressive strength tests using 3 mm thick composite plates($[45/-45/0/90]_{3s}$- IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels(between 5.4 J and 18.7 J) follow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. It is identified that the failure behaviour of the specimens from the CAI strength tests was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths art: in good agreement with the measured open hole compressive strengths. considering the impact damage site area, an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

A Study on Compressive Strength of Aircraft Composite Specimens (항공기 복합재료 적용 시편의 압축 강도 연구)

  • Kong, Changduk;Park, Hyunbum;Kim, Sanghoon;Lee, Haseung
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • The laminated sequence and thickness of a composite structure is an important design parameter which affect the strength and impact damage. In this study, it was investigated the residual strength of carbon fiber laminate after impact damage by the experimental investigation. The tensile strength test and compressive strength test were used to find the mechanical properties, previously. Impact test was performed using low-velocity drop-weight test equipment. The impact damages were finally assessed by the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the impact damage.

  • PDF

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

Progressive Damage and Failure Analysis of Open-Hole Composite Specimens Under Compressive Loading Using Finite Element Analysis (유한요소해석을 이용한 압축 하중을 받는 오픈 홀 복합재 시편의 점진적 손상 및 파손 분석)

  • Young Cheol Kim;Geunsu Joo;Hong-Kyu Jang;Jinbong Kim;Min-Gyu Kang;Woo-Kyoung Lee;Ji Hoon Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.303-309
    • /
    • 2023
  • In this paper, a Progressive Damage and Failure Analysis (PDFA) modeling method was developed using ABAQUS/EXPLICIT to predict in-plane damage and delamination for Open-Hole Compression (OHC) testing. The proposed PDFA model was constructed based on Hashin criteria and cohesive behavior. The strength and stiffness of OHC specimens with three types of stacking sequences [(45/-45/02)3]s , [(45/0/-45/90)3]s and [45/-45/0/45/-45/90/(45/-45)2]s were compared to comprehensively evaluate the validity of the Finite Element(FE) model of PDFA. The strength and stiffness of the OHC specimens were predicted relatively well, with less than a percentage error 10.0 %. For the numerical simulation case for each layup, the damage initiation/evolution of OHC specimens were evaluated for delamination and tension/compression matrix damage before and after failure.

Investigation on Damage Tolerance of Thick Laminate for Aircraft Composite Structure (항공기 복합재 구조에 적용된 두꺼운 적층판의 손상 허용 기준 평가)

  • Park, Hyun-Bum;Kong, Chang-Duk;Shin, Chul-Jin
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.105-109
    • /
    • 2012
  • Recently, development of a small aircraft has been carried out for the BASA(Bilateral Aviation Safety Agreement) program in Korea. This aircraft adopted all composite structures for environmental friendly by low fuel consumption due to its lightness behavior. However the composite structure has disadvantage which is very weak against impact damages. Therefore, damage allowable design of aircraft structure must be performed considering compressive fracture strength. This point is very important for certification of composite structure aircraft. In this paper, it is performed the research on damage tolerance of thick laminate adopting aircraft structure. The damage tolerance of three different types of thick laminates such as no damage, open hole and impact damage is evaluated under compression loading.