• Title/Summary/Keyword: Open Valley

Search Result 42, Processing Time 0.035 seconds

Study on Conservation and Habitat Restoration Based on Ecological Diagnosis for Cymbidium kanran Makino in Jeju Island, Korea (한국 제주도 한란의 생태 진단에 기초한 보전 및 서식지 복원에 관한 연구)

  • Jung, Ji-Young;Shin, Jae-Kwon;Kim, Han-Gyeoul;Byun, Jun-Gi;Pi, Jung-Hun;Koo, Bon-Yeol;Park, Jeong-Geun;Suh, Gang-Uk;Lee, Cheul-Ho;Son, Sung-Won;Kim, Jun-Soo;Cho, Hyun-Je;Bae, Kwan-Ho;Oh, Seung-Hwan;Kim, Hyun-Cheol;Kang, Seung-Tae;Cho, Yong-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.11-21
    • /
    • 2016
  • Cymbidium kanran Makino is being threatened in its own habitats due illegal collecting and habitat changes by vegetation growth along historical landuse change. In this study, we established habitat restoration model for conservation of C. kanran based on ecological diagnosis. Through exploration to Jeju Island in 2014 and 2015, we identified 27 unknown habitats of C. kanran and in there, abiotic variables and vegetation structure and composition were quantified. Altitudinal distribution of C. kanran was between 200 m~700 m a.s.l. and compared to distribution in 2004, Area of Occupation (AOO) decreased at 82%. Specific habitat affinity was not observed by evenly found in mountain slope and valley and summergreen and evergreen broadleaved forests, but likely more abundant in valley habitats with higher soil and ambient moisture. Total of 96 individual of C. kanran was observed with an average density of $942.6individuals\;ha^{-1}$. The plants showed relatively short leaf length (average=$10.7cm{\pm}1.1cm$) and small number of pseudo bulbs ($1.2{\pm}0.2$). Flowering and fruiting individuals were not observed in field. C. kanran was classified into endangered plant species as CR (Critically Endangered) category by IUCN criteria. Phenotypic plasticity of C. kanran was likely support to sustain in more shaded habitat environment and recent habatat changes to closed canopy and low light availability may exhibit negatively effects to C. kanran's life history. Restoring C. kanran habitat should create open environment as grassland and low woody species density.

Tie Spatial Structure of Ch'ang-ts'ai-ts'un Village A Case Study on a Rural Village of Korean Immigrants in Yen-pien Area of China (중국(中國) 연변지구(延邊地區) 조선족(朝鮮族)마을의 구성(構成) 룡정시 지신향 장재촌을 대상으로)

  • Lee, Kyu Sung
    • Journal of architectural history
    • /
    • v.3 no.1
    • /
    • pp.83-99
    • /
    • 1994
  • Ch'ang-Ts'al-Ts'un is a rural Village near Lung-jing City in Yen-pien Korean Autonomous Province of China. It was formed about 100 years ago by Korean Immigrants and has been developed maintaing the characteristics of traditional Korean architecture. Therefore investigating the spatial structure of this village is a meanigful work to confirm and explore one branch of Korean architecture. This study aims at analyzing the spatial structure of the village using direct data collected from the field work and indirect data from books and maps. The field work consists of on-the-site survey of the village layout, interviews of residents, observation notes and photography. Ch'ang-Ts'ai-Ts'un is located 360-370 m high above the sea level and at the side of a long valley. A river flows in the middle of the valley and relatively flat arable land exists at the both sides of the river. The location of the village related to the surrounding river and mountains suggests that the site of the village was chosen according to Feng-Shui, Chinese and Korean traditional architectural theory. The main direction of the house layouts is South-western. The village has been growing gradually until today. Therefore it is meaningful to make the village layout before Liberation(1946 A.D.) because the characteristics of Korean architecture prevailed more in that period. The area of the previous village is limited to the west side of the creek. New houses were later added to the east of the creek, forming a 'New Village'. Previously the village was composed of 3 small villages: Up, Middle and Down. Also the main access roads connecting the village with the neighboring villages were penetrating the village transversely. Presently the main access road comes to the village longitudinally from the main highway located in front of the village. The retrospective layout shows the existence of well-formed Territory, Places and Axes, thus suggesting a coherent Micro-cosmos. The boundary of imaginery territory perceived by present residents could be defined by linking conspicous outside places sorrounding the village such as Five-mountains, Front-mountain, Shin-dong village, Standing-rock, Rear-mountain and Myong-dong village. Inside the territory there are also the important places such as Bus-stop, Memorial tower of patriots, Road-maitenance building and the village itself. And inside it 5 transverse and 1 longitudinal axes exist in the form of river, roads and mountains. The perceived spatial structure of the village formed by Places, Axes and Territory is geometrical and well-balanced and suggests this village is fit for human settlement. The administrative area of the village is about 738 ha, 27 % of which is cultivated land and the rest is mountain area. Initially the village and surrounndings were covered with natural forest But the trees have been gradually cut down for building and warning houses, resulting in the present barren and artificial landscape with bare mountains and cultivated land. At present the area of the village occupied by houses is wedge-shaped, 600 m wide and 220 m deep in its maximum. The total area of the village is $122,175m^{2}$. The area and the rate of each sub-division arc as follow. 116 house-lots $91,465m^{2}$ (74.9 %) Land for public buildings and shops $2,980m^{2}$ (2.4 %) Roads $17,106m^{2}$ (14.0 %) Creek $1,356m^{2}$ (1.1 %) Vacant spaces and others $9,268m^{2}$ (7.6 %) TOTAL $122,175m^{2}$ (100.0 %) Each lot is fenced around with vertical wooden pannels 1.5-1.8 m high and each house is located to the backside of the lot. The open space of a lot is sub-divided into three areas using the same wooden fence: Front yard, Back yard and Access area. Front and back yards are generally used for crop-cultivation, the custom of which is rare in Korea. The number of lots is 116 and the average size of area is $694.7m^{2}$. Outdoor spaces in the village such as roads, vacant spaces, front yard of the cultural hall, front yard of shops and spacse around the creek are good 'behavioral settings' frequently used by residents for play, chatting, drinking and movie-watching. The road system of the village is net-shaped, having T-junctions in intersections. The road could be graded to 4 categories according to their functions: Access roads, Inner trunk roads, Connecting roads and Culs-de-sac. The total length of the road inside the village is 3,709 m and the average width is 4.6 m. The main direction of the road in the village is NNE-SSE and ESE-WNW, crossing with right angles. Conclusively, the spatial structure of Ch'ang-Ts'ai-Ts'un village consists of various components in different dimensions and these components form a coherent structure in each dimension. Therefore the village has a proper spatial structure meaningful and appropriate for human living.

  • PDF

Study on the Protection and Management of bird community in Sobaeksan National Park (소백산 국립공원내 조류 군집의 보호 및 관리에 관한 연구)

  • 이우신;이준우;박찬열
    • Korean Journal of Environment and Ecology
    • /
    • v.6 no.2
    • /
    • pp.180-192
    • /
    • 1993
  • This study was conducted to investigate bird community and to suggest a proper way how to manage and protect bird community in Sobaeksan National Park. The survey was carried over 3 main trail districts by line transect method to figure out influence factor of inhabitation of wild birds from February to October in 1992. The study results as follows: The observed birds were belong to 9 orders l2 families 58 species, they also have Sparrow Hawk dccipiter nisus, Kestrel Faleo tinnunculus(natural monument no. 323). Scops Owl I'otus scops(natural monument no. :324), Black Woodpecker Dryoaepus martius(natural monument no. 242. R). White-backed Woodpecker Dendroaepos leuotes(R) and Gray-backed Thrush Turdus hortulorum(R). These birds a]so classified into 31 species for residents. 17 species for summer visitor, 6 species for winter visitor. 4 species for passage migrant, respectively. Species richness was 38 species at spry, 33 species at summer. 26 species at autumn and 22 species at winter. The density was 3.00 ea /ha at spring, 2.37 ea /ha at summer, 3.62 ea /ha at autumn and 2.88 ea /ha at winter. Breeding bird community in Sobaeksan National Park was dominated by Hole, Bush-nesting guild and Canopy-foraging guild. Natural vegetation of 900m altitude in 1st section and the grassy plain in 2nd section are to be protected absolutely for the habituation of wild birds. Species richness in 3rd section was higher than any other section owe to a various habitat such as valley. open lands, orchid, farm land and forest etc. Food plants and broad-leaved forest is to be managed for the provision of opulent food resources in autumn and winter, user is to be managed for the successful propagation of wild birds in spring and autumn.

  • PDF

Planning for Amphibians Habitats in Urban Forest Wetlands, Korea (도시 산림습지 내 양서류 서식처 조성방안 연구)

  • Hur, Myung-Jin;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.1-19
    • /
    • 2017
  • This study set out to identify problems with amphibian habitation by the wetland types and improve their habitation environment in urban forest wetlands, thus creating a habitat for amphibians. Study site include forest swamps in Jatjul Park as well as Yeoji neighborhood Park in Guro-gu, and in Choansan neighborhood Park in Dobong-gu. The forest swamp in Jatjul Park gets its water from Mt. Maebong and it is a former escalated farmland-turned wetland. The swamp area is $2,500m^2$, a forest zone and a landscape planting site are 83.27% and 6.70% each. Target species Seoul pond frogs are inseparable from rice fields because they live in a short radius of and lay eggs in or near paddy fields, and Rana nigromaculata have similarities with Rana plancyi chosenica in choosing their habitats. There was need for paths that would lead to other paths so amphibians would spread to other parts of the forest and for measures to secure open water. Modifying a variety of routes for water, human and animals along with building a buffer to keep the core habitation zones were required. The forest swamp in Yeonji neighborhood Park used to be a water reservoir on the foot of Mt. Gunji. The swamp area is $1,980m^2$, a forest zone and farmland account for 80.61% and 4.88% each. Non-point pollutants from upstream along run into the subject forest marsh, bare ground on the around swamp and steep stone embankments obstructed amphibians. Target species was Bufo gargarizans that live in forests and edges of hills and spawn in deep water. The forest swamp in Choansan neighborhood Park gets its water from Mt. Choan and it is close to its water source that it is a mountain stream forest wetland. The basin and the swamp are $35,240m^2$ and $250m^2$ in size respectively. A forest zone accounts for 90.20%, high stone embankments laid in refurbishing the valley obstruct amphibians and there is water shortage in times of droughts. Target species were Rana coreana, Rana dybowskii and Hynobius leechii that live in mountain valleys, streams and wetlands and lay eggs in forest marshes and rocks in valleys. Looking into the three swamps of amphibian habitation, I came to conclusions that those wetlands were suitable for their amphibians but man-made facilities blocked their corridors leading to other corridors and even killed off target species in some parts of those swamps by destroying those parts. Amphibians live in water, on ground and underground at different stages of life. Hence, we should take this fact into consideration when planning their habitats and design core habitation zones, buffers zone and use zones accordingly. Buffer zones ought to be between core habitation zones and surrounding trees. Aiming at protecting core habitation zones, buffers should be in harmony with habitation zones. Use zones should be minimized in size and not in direct contact with core habitation zones.

Balancing Water Supply Reliability, Flood Hazard Mitigation and Environmental Resilience in Large River Systems

  • Goodwin, Peter
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.1-1
    • /
    • 2016
  • Many of the world's large ecosystems are severely stressed due to population growth, water quality and quantity problems, vulnerability to flood and drought, and the loss of native species and cultural resources. Consequences of climate change further increase uncertainties about the future. These major societal challenges must be addressed through innovations in governance, policy, and ways of implementing management strategies. Science and engineering play a critical role in helping define possible alternative futures that could be achieved and the possible consequences to economic development, quality of life, and sustainability of ecosystem services. Science has advanced rapidly during the past decade with the emergence of science communities coalescing around 'Grand Challenges' and the maturation of how these communities function has resulted in large interdisciplinary research networks. An example is the River Experiment Center of KICT that engages researchers from throughout Korea and the world. This trend has been complemented by major advances in sensor technologies and data synthesis to accelerate knowledge discovery. These factors combine to allow scientific debate to occur in a more open and transparent manner. The availability of information and improved communication of scientific and engineering issues is raising the level of dialogue at the science-policy interface. However, severe challenges persist since scientific discovery does not occur on the same timeframe as management actions, policy decisions or at the pace sometimes expected by elected officials. Common challenges include the need to make decisions in the face of considerable uncertainty, ensuring research results are actionable and preventing science being used by special interests to delay or obsfucate decisions. These challenges are explored in the context of examples from the United States, including the California Bay-Delta system. California transfers water from the wetter northern part of the state to the drier southern part of the state through the Central Valley Project since 1940 and this was supplemented by the State Water Project in 1973. The scale of these activities is remarkable: approximately two thirds of the population of Californians rely on water from the Delta, these waters also irrigate up to 45% of the fruits & vegetables produced in the US, and about 80% of California's commercial fishery species live in or migrate through the Bay-Delta. This Delta region is a global hotspot for biodiversity that provides habitat for over 700 species, but is also a hotspot for the loss of biodiversity with more than 25 species currently listed by the Endangered Species Act. Understanding the decline of the fragile ecosystem of the Bay-Delta system and the potential consequences to economic growth if water transfers are reduced for the environment, the California State Legislature passed landmark legislation in 2009 (CA Water Code SS 85054) that established "Coequal goals of providing a more reliable water supply for California and protecting, restoring, and enhancing the Delta ecosystem". The legislation also stated that "The coequal goals shall be achieved in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place." The challenges of integrating policy, management and scientific research will be described through this and other international examples.

  • PDF

Financial Ecosystem Development for Venture Capital Activation in Daejeon, Korea (대전지역 벤처창업 활성화를 위한 벤처 자금생태계 개선방안)

  • Choi, Jong-In;Bae, Kang
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.6
    • /
    • pp.39-48
    • /
    • 2018
  • Despite the fact that Daejeon has excellent technology infrastructures such as government-funded research institutes, Daedeok Innopolis, and KAIST, the infrastructure for initial investment and growth support for technological start-ups is not sufficient. In particular, the amount of venture capital supply in Daejeon is relatively low compared to other innovation infrastructures. The purpose of this study is to suggest the implications of the venture capital ecosystem in Daejeon area through the analysis of what evolution process has been undergoing and what improvements and complementary points are needed in the future. First, the role of public finance system should be strengthened in order to stimulate angel investment and private capital inflows to start-up companies. Second, in order to cultivate investment professionals in the region, it is necessary to grant local funds to local institutions, and to run investment expert training courses in universities. Third, cooperation between related agencies is needed to add accelerator functions to existing incubators and to foster new accelerators. Fourth, in order to expand the role of local governments, it is necessary to establish funds, to open innovation mindset of public officials, and to communicate effectively with the central government. Fifth, basic venture ecosystem infrastructures such as inflow of excellent manpower, prevention of technology deception, improvement of rechallenge environment should be expanded. Sixth, it is necessary to reorganize the step-by-step start-up financing policy of 'Establishment - Growth - Exit - Rechallenge'. This study is meaningful in that it has grasped the current status of venture start-up financial ecosystem in Daejeon, which is changing rapidly. In particular, it is different in that it identifies financial difficulties venture companies in Daejeon and finds ways to utilize existing financial ecosystem efficiently.

Analysis of Cold Air Flow Characteristics according to Urban Spatial Types to Construct a Wind Road - Focused on Urban Area of Changwon - (바람길 조성을 위한 도시공간유형별 찬공기 유동 특성 분석 - 창원시 도시지역을 중심으로 -)

  • LEE, Su-Ah;SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.30-47
    • /
    • 2022
  • This study analyzed the characteristics of cold air flow according to spatial types in urban areas of Changwon-si, Gyeongsangnam-do. The spatial types were classified by cluster analysis considering the land use map, building information, and topographic characteristics produced on the Changwon biotope map. The amount of cold air and wind speed were derived by KLAM_21 modeling. As a result, spatial types were classified into a total of 14 types considering the density and height of buildings, land use types, and topographic characteristics. Cold air flow was found to generate cold air in the valley of the forest area outside urban area, move through roads and open spaces, and accumulate in the low-lying national industrial complex, and then spread cold air throughout the urban areas. There was a lot of cold air flow in the tall building area, and the cold air accumulation was less in the slope and ridge areas. The results of this study were able to understand the characteristics of cold air flow according to building density, land use type, and topography, which will be usefully used as basic data for urban wind road construction to mitigate climate and improve air quality in urban areas.

Formation Environment of Quaternary deposits and Palynology of Jangheung-ri Archaeological Site (Jiphyeon County, Jinju City), Korea (진주 집현 장흥리 유적 제4기 퇴적층 형성 및 식생환경 연구)

  • 김주용;박영철;양동윤;봉필윤;서영남;이윤수;김진관
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.2
    • /
    • pp.9-21
    • /
    • 2002
  • In Korea, many open-air upper palaeolithic sites are located at the river valley, particularly exposed in gently rotting terrain along the river course. They are situated at an altitude less trail 30 m above present river bottom, and covered with the blankets of slope deposits of several meters in thickness. The purpose of this research is to eluridate depositional and vegetational environment of the alluvial upper palaeolithic Jangheung-ri sites on the basis of analytical properties of grain size population, chronology, palynology, soil chemistry and clay mineralogy and magnetic susceptibility of the Jangheung-ri Quaternary formations. The lithostratograpy of Jangheung-ri sit is subdivided into 3 layers based on the depositional sequence and radiocarbon ages. From bottom to top, they are composed of slope deposits with lower paleosol layers, young fluvial sand and gravel with backswamp organic muds, and upper paleosol layers. The upper paleosol was formed under rather dry climatic condition between each flooding period. Dessication cracks were prevalent in the soil solum which was filled with secondarily minuted fragments due to pedogenetic process. The soil structure shows typical braided-typed cracks in the root part of cracking texture, and more diversified pattern of crackings downward. The young fluvial sand gravel were formed by rather perennial streams after LGM. The main part of organic muds was particularly formed after 15Ka. Local backswamp were flourished with organic muds and graded suspension materials in the flooding muds were intermittently accumulated in the organic muds until ca. 11Ka. This episode was associated with migration of Nam River toward present course. Organic muds were formed in backswamp or local pond. Abies/Picea-Betula with Ranunculaceae, Compositae, Cyperaceae were prevalent. This period is characterized with B$\Phi$lling, Older Dryas, Allerod, and Younger Dryas (MIS-1). Stone artefacts were found in the lower paleosol layers formed as old as 18Ka-22Ka. Based on the artefacts and landscape settings of the Jangheung-ri site, it is presumed that settlement grounds of old people were buried by frequent floodings of old Nam River, the river-beds of which were heavily fluctuated laterally and river-bed erosions were activated from south to north in Jangheung-ri site until the terminal of LGM9ca 17Ka).

  • PDF

Geographic Conditions and Garden Designs of Byeol-seo Scenic Site of Gimcheon Bangcho-Pavilion and Mrs Choi's Pond (별서 명승 김천 방초정(芳草亭)과 최씨담(崔氏潭)의 입지 및 조영 특성)

  • Rho, Jae-Hyun;Lee, Hyun-Woo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.1
    • /
    • pp.71-82
    • /
    • 2016
  • Through literature review and on-site survey of Gimcheon Bangcho pavilion(芳草亭), the features of garden design(庭園意匠) including geographic conditions, landscape modeling of Nujeong(樓亭) and Jidang(池塘, Pond), and scenic interpretations in Nujeong Jeiyoung poetry(樓亭題詠詩) have been carefully researched and the findings are presented below. Bangcho pavilion is located in a village called Wonteomaeul, which belongs to the feng shui state of golden hairpin and floating lotus. It has long been the cultural hub of communication and social interactions among the villagers. The Head House of Jeongyanggong(靖襄公宗宅), the main house(本第) of the Yeonan Yi Clan(延安李氏), is about 150m away from Bangcho pavilion, an artistic space whose landscape modeling is of the form called Nujeong. The name 'Bangcho' reflects the noble man(君子)'s determination: "I yearn for the place where honey parrots fly and the fragrant grass grow." From the two story structure of the pavilion where there is an additional floor installed to the central ondol room by a four-sided subdivision door, one can detect the aspiration of the men for pursuing an open view. One can also observe the efforts in designing the room to be used for multiple purposes from a private place to an office for periodic publication of a family lineage document called "Garyejunghae(家禮增解)". Bangcho pavilion's main sight of interest is Mrs Choi's Pond(崔氏潭), the one and only garden structure that comprises the twin round island of square pond(方池雙圓島) among the existing Jidangs in Korea. In this special Jidang, there are two coexisting islands that represent a well thought out garden facility for symbolizing conjugal affection and unyielding fidelity between master and servent(主從). In addition, the three inflows and one outflow facing the Ramcheon valley is regarded as an ideal garden design optimized for performing the function of a village bangjuk which is the site for undercurrent creation and ecological reprocessing. At present, Giant pussy willow is the only circular vegetation identified in the area of Bangcho pavilion, although this plant species is about to wither away judging from the signs of decrepitude that seems to persist for two out of three weeks. The old pine tree that appears in the 1872 Jeiyoung poetry of Byeongseon Song(宋秉璿) no longer exists. Anjae(安齋) Jang Yoo(張瑠)'s "Eight Scenary on Bangcho pavilion(芳草亭八詠)" and its expansive reproduction "Ten Scenary on Bangcho pavilion(芳草亭十景)" from Gwagang(守岡) Lee Manyoung(李晩永) depict vividly the pastoric scenery of an idyll(田園景) that stretches throughout the natural and cultural landscape of the province of Gimcheon and Guseong surrounding the Bangcho pavilion. The Bangcho pavilion sutra aims to establish Bangcho pavilion and the village of Wonteomaeul as the centre of microcosmos by dividing and allocating its scenic features according to the four seasons and times(四季四時), the eight courses(八方) and the meteorological phenomena, and it is the incarnation(顯現) of landscape perception upon the Byeol-seo Scenic site of Bangcho pavilion, the cultural hub of the region.

Volatilization of molinate in paddy rice ecosystem and its concentration in air causing phytotoxicity to chili pepper (벼 재배 환경 중 molinate의 휘산과 공기 중 고추약해 발현농도)

  • Park, Byung-Jun;Choi, Ju-Hyeon;Kim, Chan-Sub;Im, Geon-Jae;Oh, Byung-Youl;Shim, Jae-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.70-80
    • /
    • 2005
  • To evaluate the exposure of molinate in agricultural environment and its effect against the non-target crop in air, this experiment was conducted to elucidate volatilization characteristics of molinate in aquatic condition and to determine critical concentration of molinate in the air causing phytotoxicity to Chili pepper. Cumulative volatilized rate of molinate from water was 22.7% at $35^{\circ}C$ for water temperature and 20 L/min for air velocity while 3.2% at $25^{\circ}C$ and 10 L/min within 47 hour after applied under closed system, respectively. The molinate concentrations in air above 60 cm height from soil surface of valley and open paddy rice field were reached the highest value of 18.17 and $11.59{\mu}g/m^3$, respectively within 24 hours after applying granular formulation at dose rate of molinate 150 g/1,000 $m^2$. However, their concentrations were drastically diminished to around 0.18 and $0.51{\mu}g/m^3$ level in 20 days after application, which volatilization pattern were similar to both regions. Also, the concentration of molinate in air above 60 cm height from soil surface was distributed higher 2 times than that above 180 cm height. Meanwhile, a phytotoxic symptom against the nearby chili pepper was revealed within three days after applied and molinate was detected $0.004{\sim}0.006$ mg/kg level from severe damaged leaves. The dose and exposure relations of molinate in the air against the non-target crop was also investigated in lab trial. The phytotoxic symptom, shriveled leaves, of the chili pepper was encountered by exposing two days with concentration of $13.6{\mu}g/m^3$, three days with $6.8{\mu}g/m^3$ or four days with $3.4{\mu}g/m^3$. The symptom was still recovered within four weeks after the plants had received fresh air. On the other hand, the phytotoxic response through root uptake of the herbicide in water culture was relatively insensitive, in which the symptom is observed ten days with the concentration of 300 ${\mu}g/L$.