• Title/Summary/Keyword: Open Channel

Search Result 768, Processing Time 0.028 seconds

The Role of Intracellular $Mg^{2+}$ in Regulation of $Ca^{2+}-activated$ $K^+$ Channel in Pulmonary Arterial Smooth Muscle Cells of the Rabbit

  • Lee, Suk-Ho;Park, Myoung-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.611-616
    • /
    • 1998
  • Although the $Ca^{2+}-activated\;K^+\;(I_{K,Ca})$ channel is known to play an important role in the maintenance of resting membrane potential, the regulation of the channel in physiological condition is not completely understood in vascular myocytes. In this study, we investigated the role of cytoplasmic $Mg^{2+}$ on the regulation of $I_{K,Ca}$ channel in pulmonary arterial myocytes of the rabbit using the inside-out patch clamp technique. $Mg^{2+}$ increased open probability (Po), but decreased the magnitude of single channel current. $Mg^{2+}-induced$ block of unitary current showed strong voltage dependence but increase of Po by $Mg^{2+}$ was not dependent on the membrane potential. The apparent effect of $Mg^{2+}$ might, thus, depend on the proportion between opposite effects on the Po and on the conductance of $I_{K,Ca}$ channel. In low concentration of cytoplasmic $Ca^{2+},\;Mg^{2+}$ increased $I_{K,Ca}$ by mainly enhancement of Po. However, at very high concentration of cytoplasmic $Ca^{2+},$ such as pCa 5.5, $Mg^{2+}$ decreased $I_{K,Ca}$ through the inhibition of unitary current. Moreover, $Mg^{2+}$ could activate the channel even in the absence of $Ca^{2+}.\;Mg^{2+}$ might, therefore, partly contribute to the opening of $I_{K,Ca}$ channel in resting membrane potential. This phenomenon might explain why $I_{K,Ca}$ contributes to the resting membrane potential where membrane potential and concentration of free $Ca^{2+}$ are very low.

  • PDF

Three-Dimensional Numerical Simulations of Open-Channel Flows with Alternate Vegetated Zones (교행식생 영역을 갖는 개수로 흐름에서의 3차원 수치모의)

  • Kang, Hyeongsik;Kim, Kyu-Ho;Im, Dongkyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.247-257
    • /
    • 2009
  • In the present paper, turbulent open-channel flows with alternate vegetated zones are numerically simulated using threedimensional model. The Reynolds-averaged Navier-Stokes Equations are solved with the ${\kappa}-{\varepsilon}$ model. The CFD code developed by Olsen(2004) is used for the present study. For model validation, the partly vegetated channel flows are simulated, and the computed depth-averaged mean velocity and Reynolds stress are compared with measured data in the literature. Comparisons reveal that the present model successfully predicts the mean flow and turbulent structures in vegetated open-channel. However, it is found that the ${\kappa}-{\varepsilon}$ model cannot accurately predict the momentum transfer at the interface between the vegetated zone and the non-vegetated zone. It is because the ${\kappa}-{\varepsilon}$ model is the isotropic turbulence model. Next, the open channel flows with alternate vegetated zones are simulated. The computed mean velocities are compared well with the previously reported measured data. Good agreement between the simulated results and the experimental data was found. Also, the turbulent flows are computed for different densities of vegetation. It is found that the vegetation curves the flow and the meandering flow pattern becomes more obvious with increasing vegetation density. When the vegetation density is 9.97%, the recirculation flows occur at the locations opposite to the vegetation zones. The impacts of vegetation on the flow velocity and the water surface elevation are also investigated.

One-Dimensional Model for Flow Resistance of Floodplain Vegetation in Compound Open-Channel Flow (복단면 개수로흐름에서 홍수터 식생의 흐름저항을 반영한 1차원 모형)

  • Park, Moon-Hyeong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.517-524
    • /
    • 2010
  • In this study, the 1D apparent shear stress model for vegetated compound open-channel flows was suggested. To consider the effect of momentum exchange between main channel and floodplain, the eddy viscosity concept was used in the present model. The interfacial eddy viscosity in the interface of main channel and floodplain was determined from the 3D Reynolds stress model. The evaluated interfacial eddy viscosity appears to be good agreement with those proposed previously. To investigate the effect of interfacial eddy viscosity, sensitive analysis was carried out. the computed backwater profiles are nearly identical with respect to the value of the interfacial eddy viscosity. However, the discharge conveyed by the floodplain changes is proportional to the interfacial eddy viscosity. Finally, the changes of the interfacial eddy viscosity due to the vegetation density and vegetation height were examined. The computed results of interfacial eddy viscosity are in proportion to the vegetation density and vegetation height, and the interfacial eddy viscosity has a range of $(2-5)\;{\times}\;10^{-4}$.

Altered Electrophysiological Properties of Coronary Artery in Iso-prenaline-Induced Cardiac Hypertrophy

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.413-421
    • /
    • 2001
  • An impaired smooth muscle cell (SMC) relaxation of coronary artery by alteration of $K^+$ channels would be the most potential explanation for reduced coronary reserve in left ventricular hypertrophy (LVH), however, this possibility has not been investigated. We performed morphometrical analysis of the coronary artery under electron microscopy and measured $Ca^{2+}-activated\;K\;(K_{Ca})$ currents and delayed rectifier K $(K_{dr})$ currents by whole-cell and inside-out patch-clamp technique in single coronary arterial SMCs from rabbits subjected to isoprenaline-induced cardiac hypertrophy. Coronary arterial SMCs underwent significant changes in ultrastructure. The unitary current amplitude and the open-state probability of $K_{Ca}$ channel were significantly reduced in hypertrophy without open-time and closed-time kinetic. The concentration-response curve of $K_{Ca}$ channel to $Ca^{2+}$ is shifted to the right in hypertrophy. The reduction in the mean single channel current and increase in the open channel noise of $K_{Ca}$ channel by TEA were more sensitive in hypertrophy. $K_{dr}$ current density is significantly reduced in hypertrophy without activation and inactivation kinetics. The sensitivity of $K_{dr}$ current on 4-AP is significantly increased in hypertrophy. This is the first study to report evidence for alterations of $K_{Ca}$ channels and $K_{dr}$ channels in coronary SMCs with LVH. The findings may provide some insight into mechanism of the reduced coronary reserve in LVH.

  • PDF

Analysis of Generating Mechanism of Secondary Flows in Turbulent Open-Channel Flows using DNS Data (DNS 자료를 이용한 개수로에서 이차흐름의 생성메커니즘 분석)

  • Joung, Younghoon;Choi, Sung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.139-144
    • /
    • 2006
  • Using DNS data for turbulent flows in an open-channel with sidewalls, the mechanisms by which secondary flows are generated and by which Reynolds shear stresses are created, are demonstrated. Near the sidewall, secondary flows invading towards the sidewall are observed in the regions of both lower and upper corners, while secondary flows ejecting from the sidewall towards the center of the channel are created elsewhere. The distributions of Reynolds shear stresses near the sidewall are analyzed, connecting their productions with coherent structures. A quadrant analysis shows that sweeps are dominant in two corner regions where secondary flows invading towards the sidewall are generated, but that ejections are dominant in the region where secondary flows ejecting towards the center of the channel are created. Also, conditional quadrant analyses reveal that the productions of Reynolds shear stresses and the patterns of secondary flows are determined by the directional tendencies of coherent structures.

An Efficient Method Of The Suspended Sediment-Discharge Measurement Using Entropy Concept

  • Choo, Tai-Ho
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.95-105
    • /
    • 2000
  • A method is presented which enables easily the computation of the suspended sediment discharge as the mean sediment concentration and mean flow velocity. This method has significant advantages over the traditional method, which principally depend on a set of measured concentration data. The method is based on both a new sediment concentration and mean sediment concentration equations which have been derived from the entropy concept used in statistical mechanics and information theory: (1) The sediment concentration distribution equations derived, are capable of describing the variation of the concentration in the vertical direction. (2) The mean concentration equation derived, is capable of calculating easily the mean concentration by using only one measured concentration in open channel. The present study mainly addresses the following two subjects : (1) new sediment concentration and mean sediment concentration equations are derived from the entropy concept : (2) An efficient and useful method of suspended sediment-discharge measurements is developed which can facilitate the estimation of suspended sediment-discharge in open channel. Flume and laboratory data are used to carry out the research task outlined above. An efficient method for determining the suspended sediment-discharge in the open channel has been developed. The method presented also is efficient and applicable in estimating the sediment transport in rivers and the sediment deposit in the reservoirs, and can drastically reduce the time and cost of sediment measurements.

  • PDF

Friction Factor of Rectangular Open Channel Flow (사각형 개수로 마찰계수)

  • 유동훈
    • Water for future
    • /
    • v.28 no.2
    • /
    • pp.155-168
    • /
    • 1995
  • The present paper discusses the traditional empirical equations of friction factor or cross-sectional mean velocity of open channel flow and suggests the new form of friction factor equation. Dimensional analysis is conducted for the possible forms of traditional empirical equations in order to satisfy the dimensional equality, and new forms of empirical equations are presented with introducing equivalent roughness height. Considering the distribution of friction factor against Reynolds number which has a similar characteristics to that of smooth turbulent flow in circular pipe, the friction factor equation of rectangular open channel flow is developed by modifying the friction factor equation of circular pipe flow for the region of smooth turbulent flow. The equations including the dimensionally-corrected empirical equations are tested against Bazin's laboratory experiments.

  • PDF

Study on CFD Methodology for a Open Channel Type UV Reactor (전산유체역학을 활용한 개수로형 UV소독장비의 해석기법 연구)

  • Hwang, Woochul;Bak, Jeong-Gyu;Kim, Hyunsoo;Lee, Kunghyuk;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.54-59
    • /
    • 2015
  • The performance of UV reactor which is used in water treatment is strongly affected by UV fluence rate and water flow in the UV reactor. Therefore, CFD tools are widely used in designing process of UV reactors. This paper describes the development of a computational fluid dynamics (CFD) methodology that can be used to calculate the performance of open channel type UV reactor used in wastewater treatment plant. All computations were performed using commercial CFD code, CFX, by considering three dimensional, steady, incompressible flow. The Eulerian-Eulerian multi-phase method were used to capture the water-air interface. The MSSS model, provided by UVCalc3D, was used to calculate the UV intensity field. The numerical predictions and calculated UV Dose were compared with experimental dataset to validate the CFD methodology. The reactor performance based on MS2 log reduction was well matched with measurements within 6%.

A Numerical Analysis of Flow through Open Channel Constrictions using Turbulence Model (난류모델을 이용한 개수로 급축소부 흐름의 수치해석)

  • Choe, Heung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.201-210
    • /
    • 1997
  • To analyze the flow through open-channel constrictions using $\kappa$-$\varepsilon$ turbulence mode, a numerical model is developed. The simulated results agree well with existing experimental data which attributes to the adequate input of turbulent eddy-viscosity by turbulence model. A stream function and velocity distributions enable the analysis of flow characteristics at the downstream of constriction. Turbulent eddy viscosities over channel are spatially varied with stream pattern. For the evaluation of rapidly varied flow, the eddy-viscosity input by turbulence model is required instead of the empirical effective viscosity to solve a shallow water equation.

  • PDF

Analysis of OPEN LOOP Power Control in CDMA Reverse Link (CDMA 역방향 링크에서 OPEN LOOP 전력제어 알고리즘 분석)

  • 이철희;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.804-811
    • /
    • 1997
  • In the CDMA mobile communication system, reverse power control can be used to minimize the interference level for a good quality of the voice channel, and used to maxmize the system capacity. In this paper, we have analyed the environment of the K-parameter and the access procedure for the mobile station, and proposed a new algorithm for the access probe procedure of the station. K-parameter is determined according to the environment of the base station and access probe can adaptively control the power according to the position changes of the mobile station or the rapid and various state changes of the channel. Simulation results in the limited test environment show that it can increase the system capacity and decrease the power comsumption of the mobile station while maintaining the good and stable quality of the voice channel.

  • PDF