• Title/Summary/Keyword: Open Channel

Search Result 768, Processing Time 0.034 seconds

A Comparative Study of XP-SWMM & Hydraulic Model Experiment of the Hydraulic Characteristics when Storm Drain is Filled to Capacity (우수관로(雨水管路) 만수시(滿水時) 수리학적거동(水理學的擧動)에 대한 XP-SWMM와 수리모형실험(水理模型實驗)의 비교(比較) 연구(硏究))

  • Choi, Han-Kuy;Beak, Hyo-Seon;Beak, Doo-Yeol
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.19-25
    • /
    • 2005
  • To use land more efficiently under urbanization trend, Kangwon Province often covers open channels of creeks and uses them as parking lots or roads. A covered open channel section tends to form a rectangular culvert. Therefore, a creek with covered open channels can function as a storm drain. At the time of light rainfall, there are no significant differences except water flowing pattern between a creek with a covered open channel and a creek without it. Recently, however, the frequent occurrence of heavy rainfalls limited at a small, definite area has become problematic. When the heavy rainfall causes the carrying capacity of a creek to be exceeded,the creek with covered open channel has a more serious problem than the creek without it has. Therefore, we made an interpretation of data and conducted hydraulic model experiment to come up with economical solution to this problem.

  • PDF

Characteristics of Turbulent Flows and Suspended Sediment Transport in Open-channel with Submerged Vegetation (침수식생 개수로에서 난류 및 부유사 이동 특성)

  • Yang, Won-Jun;Jang, Ji-Yeon;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.417-427
    • /
    • 2011
  • The open-channel flow with submerged vegetation shows distinct features in two separate regions, namely upper and vegetation layers. In the upper layer, the flow is akin to the open-channel flow, while the flow in the vegetation layer is relatively uniform with suppressed turbulence due to vegetation stems. This paper presents laboratory experiments to investigate the characteristics of turbulent flows and suspended sediment transport in open-channel flows with submerged vegetation. An open-channel facility, 0.5 m wide and 12 m long, was used for laboratory experiments. Various discharges were employed with depth ratios of 2~3, and wooden cylinders were used for vegetation. To make equilibrium suspension, sediment particles of median diameter of 75 ${\mu}M$ were fed until capacity condition. Laser Doppler velocimeter was used to measure instantaneous velocity, and direct sampling with vinyl tube was used to measure the concentration of suspended sediment. Using the sampled data, the mean flow and turbulence structures were provided and characteristics of suspended sediment concentration with Rouse number were presented.

Examining the Equality of Multi-Outlet Flow Rates within a Dual Open Channel (이중 수로 구조의 분배수로 내 다지점 유출 유량의 균등성 평가에 관한 연구)

  • Kim, Seong-Su;Park, No-Suk;Jeong, Woo-Chang;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.423-430
    • /
    • 2012
  • This study was conducted to qualify the equality of the flow distribution from open channel between rapid mixing basin and flocculation basins in a domestic S_ water treatment plant, and to suggest a remedy for improving the equality. In order to evaluate the feasibility of the suggested remedy, computational fluid dynamics (CFD) technique are used, and for verifying the CFD simulation results tracer tests were carried out. From the results of CFD simulation and tracer tests, it was investigated that the modification of hydraulic structure in the distribution channel, which is to install the longitudinal orifice baffle in flow direction, could improve the equality of the flow distribution over 75%.

Anisotropy of Turbulence in Vegetated Open-Channel Flows (식생된 개수로 흐름에서의 난류의 비등방성)

  • Kang, Hyeong-Sik;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.871-883
    • /
    • 2005
  • This paper investigates the impacts of turbulent anisotropy on the mean flow and turbulence structures in vegetated open-channel flows. The Reynolds stress model, which is an anisotropic turbulence model, is used for the turbulence closure. Plain open-channel flows and vegetated flows with emergent and submerged plants are simulated. Computed profiles of the mean velocity and turbulence structures are compared with measured data available in the literature. Comparisons are also made with the predictions by the k-$\epsilon$ model and by the algebraic stress model. For plain open-channel flows and open-channel flows with emergent vegetation, the mean velocity and Reynolds stress profiles by isotropic and anisotropic turbulence models were hardly distinguished and they agreed well with measured data. This means that the mean flow and Reynolds stress is hardly affected by anisotropy of turbulence. However, anisotropy of turbulence due to the damping effect near the bottom and free surface is successfully simulated only by the Reynolds stress model. In open-channel flows with submerged vegetation, anisotropy of turbulence is strengthenednear the vegetation height. The Reynolds stress model predicts the mean velocity and turbulence intensity better than the algebraic stress model or the k-$\epsilon$ model. However, above the vegetation height, the k-$\epsilon$ model overestimates the mean velocity and underestimates turbulence intensity Sediment transport capacity of vegetated open-channel flows is also investigated by using the computed profiles. It is shown that the isotropic turbulence model underestimates seriously suspended load.

Stability of Cantilevered Laminated Composite Structures with Open Channel Section by Geometrical Shape Variations (채널단면의 기하학적 형상변화에 따른 캔틸레버 적층구조물의 안정성 연구)

  • Park, Won-Tae;Chun, Kyoung-Sik;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.169-175
    • /
    • 2004
  • In this paper, the stability of cantilever composite laminated structures with open channel section is studied. This paper deals with the buckling behavior under the variation of the geometrical shape (length ratio, crank angle in the open channel section), the fiber reinforced angle, and so on in order to offer a effective and reliable design data. Also, sensitive analyses are carried out on the stability by the interaction of design factors. Based on this fact, the proper channel section and lamination scheme of composite material cantilever structures are considered in the engineering aspect.

Normal Depth of Best Section (최량수리단면의 등류수심)

  • Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.729-736
    • /
    • 2002
  • The computation of normal depth is one of the most important parts in the design of open channel flow, and the best section is in general the most economic section in the case of constructing artificial open channels. Thus the determination of the normal depth of the best section is the essential item in the design of most open channel flows. To estimate the frictional forces a power law is introduced, which is applicable to most situations in open channel flows. Explicit and consistent forms of equations are deduced for the calculation of normal depth of triangular, rectangular and trapezoidal best sections. Furthermore the equations of normal depth are found to have the same form as those of pipe diameter for the design of pipe flow.

Xenopus Oocyte의 $K^{+}$ Channel에 관한 연구

  • 채수완
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.160-160
    • /
    • 1993
  • 목적: Guinea pig heart의 ATP sensitive $K^{+}$ channel xenopus oocyte에 발현시켜 연구하고져 본 실험을 행하였다. 실험방법: 기니픽 심장으로부터 ,RNA를 분리하여 50ng/$\mu$l의 농도로 50nl를 xenopusdp 주입하였다. Xenpus oocyte에서 conventional electrode를 이용 막전휘를 측정하였고, pH selective 미세전극으로 세포내 pH를 측정하였다. 막전위에 미치는 potassium channel opener, blocker, KCN의 작용을 관찰하였다. 결과: 기니픽 심장 mRNA를 주입하거나 주입하지 않은 xenopus oocyte에서 $K^{+}$channel opener인 cromakalin, RP49356등은 과분극을 일으키지 못하였다. 그러나 세포내 ATP 감소제인 KCN은 농도 의존적으로 과분극을 일으켰으나 ,glibenclamide에 의해 차단되는 않았다. mRNA를 주입한 oocyte에서 Na-H 자극제인 NH$_4$Cl은 pH 변동을 일으켜 NA-H exchange를 expression 시켰다. 결론: Xenopus oocyte는 cromakalin등에 의해 open되는 $K^{+}$channel 은 없었고, 기니픽 심근의 ATP sensitive $K^{+}$channel로 expression 되지 않았으나 Na-H exchange 는 expression 됨을 알 수 있었다. KCN으로 open 되는 $K^{+}$channel이 있었으나 glibenclamide에는 차단되지 않는 channel이였다.

  • PDF

Experimental Study on Levee Seepage Considering Dynamic Head in a Trapezoidal Open-Channel (사다리꼴 개수로에서 동수두를 고려한 제방 침투에 관한 실험연구)

  • Im, Dongkyun;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.239-245
    • /
    • 2009
  • Levees, the hydro-engineering structure, are similar to earth dams in aspects of shape and structure. However, they are different from earth dams in the external force conditions. As a levee is the structure that is complexly affected by the flow and the water stage in the river, it may be unreasonable to analyze the seepage safety as previous studies derived from the neglect of river flow. In this study, an experiment was conducted to investigate flow structures in a trapezoidal open-channel and the influence of the channel flow on the seepage through a levee. Flow structures in a trapezoidal open-channel were distinguished from a rectangular open-channel such as velocity and bottom shear stress distributions. In case with the flow velocity of 0.5 m/s, seepage water heads were higher 10 percent as compared with the stagnant case. This result is caused by dynamic heads, secondary currents, turbulent fluctuation forces, and various physical factors. It is suggested that external force boundary considered in terms of the flow as well as the water stage is proper to seepage analyses.

Characteristics of the Momentum Equation in Open Channel Flow (개수로흐름 해석에서 운동량방정식의 특성)

  • Jeon, Min-Woo;Cho, Yong-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1111-1115
    • /
    • 2008
  • The relative magnitudes of the individual terms of the momentum equation are analyzed and compared by the analytical methods in open channel flow. The temporal variations of each term(local acceleration term, convective acceleration term, pressure force term, gravity force term, and friction force term) are analyzed for the influence factors to runoff expressed by the parameters of the momentum equation, stream slopes and roughness coefficients. The magnitudes of each term vary with the channel characteristics, especially when the roughness coefficients are dominant or for the mild stream slopes the pressure term can not be negligible. As a result of the characteristics of momentum equation in open channel flow, the acceleration terms are very small compared with the other terms. The magnitudes of local acceleration and convective acceleration offsets each other. The peak time of each term except the gravity term coincides with inflection point of the hydrograph rising limb each other.

  • PDF

Bedload Sediment Transport and Morphological Change in Cross Sections of Straight Open-Channel (직선 개수로 횡단면에서의 소류사 이송과 지형 변화)

  • Pham, Chien Van;Kim, Tae-Boem;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.62-66
    • /
    • 2010
  • This study presents velocities of bedload sediment transport in both longitudinal and lateral directions and applied in considering morphological change of straight open channel. The velocities of particle motion have obtained by considering the forces balance acting on particles on the bed between the drag, tangential component of the immersed weight of the particle, and Coulomb's resistive forces. Numerical profiles of particle motion velocities reveals good agreement in comparison between this study and Kovacs and Parker (1994). The evaluated velocities components of particle transport are get used to estimate bedload transport rate in considering morphological change of straight open channel. For the application, numerical solution is applied to laboratory experiment which shows very close solution profiles between this study and observed data of a self-formed straight channel.

  • PDF