• Title/Summary/Keyword: Open Cell Structure

Search Result 136, Processing Time 0.025 seconds

Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies

  • Jung-Hyun Park;Seung-Woo Lee;Donghoon Choi;Changhyung Lee;Young Chul Sung
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.9.1-9.21
    • /
    • 2024
  • The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.

Size-dependent Optical and Electrical Properties of PbS Quantum Dots

  • Choi, Hye-Kyoung;Kim, Jun-Kwan;Song, Jung-Hoon;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.186-186
    • /
    • 2012
  • This report investigates a new synthetic route and the size-dependent optical and electrical properties of PbS nanocrystal quantum dots (NQDs) in diameters ranging between 1.5 and 6 nm. Particularly we synthesize ultra-small sized PbS NQDs having extreme quantum confinement with 1.5~2.9 nm in diameter (2.58~1.5 eV in first exciton energy) for the first time by adjusting growth temperature and growth time. In this region, the Stokes shift increases as decreasing size, which is testimony to the highly quantum confinement effect of ultra-small sized PbS NQDs. To find out the electrical properties, we fabricate self-assembled films of PbS NQDs using layer by layer (LBL) spin-coating method and replacing the original ligands with oleic acid to short ligands with 1, 2-ethandithiol (EDT) in the course. The use of capping ligands (EDT) allows us to achieve effective electrical transport in the arrays of solution processed PbS NQDs. These high-quality films apply to Schottky solar cell made in an glass/ITO/PbS/LiF/Al structure and thin-film transistor varying the PbS NQDs diameter 1.5~6 nm. We achieve the highest open-circuit voltage (<0.6 V) in Schottky solar cell ever using PbS NQDs with first exciton energy 2.58 eV.

  • PDF

A Study on the Compound Semiconductor $ZnS/_{(P)}Si$ Solar Cell (화합물 반도체 $ZnS/_{(P)}Si$ 태양전지에 관한 연구)

  • Song, In-Duk;Jhoun, Choon-Saing;Lim, Eung-Choon
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.183-186
    • /
    • 1990
  • The lattice mismatch between ZnS and Si is negligible because of its value being 0.39%. In this study, $ZnS/_{(P)}Si$ solar cell were fabricated as a layer of ZnS is epitaxially grown on a silicon substrate by PVD method and its photovoltaic properties were measured and discussed. The heat treatment was done after deposition. As the temperature increased up to a certain value, the film has better perfection in crystal structure and electrical characteristics. Measurments of the change that occur in the ZnS films were made by SEM., X-ray diffraction. The optimal thickness of film showned $0.6{\mu}m$, being measured by SEM. The great improvement of the grain growth ZnS film came out after heat-treatment. The result obtained from the $ZnS/_{(P)}Si$ solar cell as follows:short circuit current; $I_{sc}=54mA/cm^2$,open voltage; $V_{oc}=400mV$, fill factor FF=0.72, conversion efficiency; ${\eta}=15.6%$ under the irradiation of 100 ($mW/cm^2$) focused by solar energy. And these are discussed in comparison with other kinds.

  • PDF

Effect of Process Conditions on the Microstructure of Particle-Stabilized Al2O3 Foam

  • Ahmad, Rizwan;Ha, Jang-Hoon;Hahn, Yoo-Dong;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.278-284
    • /
    • 2012
  • $Al_2O_3$ foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, $Al_2O_3$ foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the $Al_2O_3$ particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the $Al_2O_3$ foam with open and closed-cell structure, cell size ranging from $20{\mu}m$ to $300{\mu}m$ having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at $1600^{\circ}C$ for 2 h in air.

A primo vessel-like structure in a dog with inflammatory pseudotumor

  • Cho, Sung-Jin;Hong, Sun-Hwa;Han, Sang-Jun;Kim, Ok-Jin
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.1
    • /
    • pp.77-82
    • /
    • 2012
  • Inflammatory pseudotumor (IPT) is a term defining a mass characterized microscopically by a proliferation of bland mesenchymal spindle cells infiltrated by diffuse mixed inflammatory cells with a predominance of plasma cells and lymphocytes. Here, we show the primo vessel-like structure of the primo-vascular system (PVS) in a dog with IPT. A 6-years old male Mongrel dog was diagnosed with an abnormal mass (diameter 5.5 cm, weight 22 g) near left preputial area. The dog was submitted to the surgical detectomy of the mass. During the surgical operation, we observed primo vessel-like material. After fixations, the masses appeared macroscopically as lipoid-like, firm, white to grey masses, measuring $5{\times}8cm$. Histologically, cellular infiltration into the muscular layers was frequently seen. The mesenchymal proliferation remained the main component of the mass and was composed of myofibroblastic-like spindle cells characterized by globular, irregular nuclei containing open chromatin and a prominent nucleolus. On the basis of the histopathologic lesions, the subcutaneous mass was diagnosed as IPT. Also, we detected a primo vessel-like structures in some areas of the IPT tissues. These were observed as novel thread-like structures and bundle of tubular structures. To our knowledge, this report is the first case of primo vessel-like structure in a dog with IPT.

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping

  • Aliaghayee, Mehdi;Fard, Hassan Ghafoori;Zandi, Ashkan
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • The light harvesting efficiency is counted as an important factor in the power conversion efficiency of DSSCs. There are two measures to improve this parameter, including enhancing the dye-loading capacity and increasing the light trapping in the photoanode structure. In this paper, these tasks are addressed by introducing a macro-porous silicon (PSi) substrate as photoanode. The effects of the novel photoanode structure on the DSSC performance have been investigated by using energy dispersive X-ray spectroscopy, photocurrent-voltage, UV-visible spectroscopy, reflectance spectroscopy, and electrochemical impedance spectroscopy measurements. The results indicated that bigger porosity percentage of the PSi structure improved the both anti-reflective/light-trapping and dye-loading capacity properties. PSi based DSSCs own higher power conversion efficiency due to its remarkable higher photocurrent, open circuit voltage, and fill factor. Percent porosity of 64%, PSi(III), resulted in nearly 50 percent increment in power conversion efficiency compared with conventional DSSC. This paper showed that PSi can be a good candidate for the improvement of light harvesting efficiency in DSSCs. Furthermore, this study can be considered a valuable reference for more investigations in the design of multifunctional devices which will profit from integrated on-chip solar power.

Fine structure of the intercalated disc and cardiac junctions in the black widow spider Latrodectus mactans

  • Yan Sun;Seung-Min Lee;Bon-Jin Ku;Myung-Jin Moon
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.20.1-20.9
    • /
    • 2020
  • Arthropods have an open circulatory system with a simple tubular heart, so it has been estimated that the contractile pumping structure of the cardiac muscle will be less efficient than that of vertebrates. Nevertheless, certain arthropods are known to have far superior properties and characteristics than vertebrates, so we investigated the fine structural features of intercalated discs and cardiac junctions of cardiac muscle cells in the black widow spider Latrodectus mactans. Characteristically, the spider cardiac muscle has typical striated features and represents a functional syncytium that supports multiple connections to adjacent cells by intercalated discs. Histologically, the boundary lamina of each sarcolemma connects to the basement membrane to form an elastic sheath, and the extracellular matrix allows the cells to be anchored to other tissues. Since the intercalated disc is also part of sarcolemma, it contains gap junctions for depolarization and desmosomes that keep the fibers together during cardiac muscle contraction. Furthermore, fascia adherens and macula adherens (desmosomes) were also identified as cell junctions in both sarcolemma and intercalated discs. To enable the coordinated heartbeat of the cardiac muscle, the muscle fibers have neuronal innervations by multiple axons from the motor ganglion.

A Zinc Porphyrin Sensitizer Modified with Donor and Acceptor Groups for Dye-Sensitized Solar Cells

  • Lee, Seewoo;Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3052-3058
    • /
    • 2014
  • In this article, we have designed and synthesized a novel donor-${\pi}$-acceptor (D-${\pi}$-A) type porphyrin-based sensitizer (denoted UI-5), in which a carboxyl anchoring group and a 9,9-dimethyl fluorene were introduced at the meso-positions of porphyrin ring via phenylethynyl and ethynyl bridging units, respectively. Long alkoxy chains in ortho-positions of the phenyls were supposed to reduce the degree of dye aggregation, which tends to affect electron injection yield in a photovoltaic cell. The cyclic voltammetry was employed to determine the band gap of UI-5 to be 1.41 eV based on the HOMO and LUMO energy levels, which were estimated by the onset oxidation and reduction potentials. The incident monochromatic photon-to-current conversion efficiency of the UI-5 DSSC assembled with double-layer (20 nm-sized $TiO_2$/400 nm-sized $TiO_2$) film electrodes appeared lower upon overall ranges of the excitation wavelengths, but exhibited a higher value over the NIR ranges (${\lambda}$ = 650-700 nm) compared to the common reference sensitizer N719. The UI-5-sensitized cell yielded a relatively poor device performance with an overall conversion efficiency of 0.74% with a short circuit photocurrent density of $3.05mA/cm^2$, an open circuit voltage of 0.54 mV and a fill factor of 0.44 under the standard global air mass (AM 1.5) solar conditions. However, our report about the synthesis and the photovoltaic characteristics of a porphyrin-based sensitizer in a D-${\pi}$-A structure demonstrated a significant complex relationship between the sensitizer structure and the cell performance.

Improving Efficiencies of DSC by Down-conversion of LiGdF4:Eu (Eu이 도핑된 LiGdF4의 Down-conversion을 이용한 염료감응형 태양전지의 효율 향상)

  • 김현주;송재성;김상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.323-328
    • /
    • 2004
  • Down-conversion of Eu$^{3+}$ doped LiGdF$_4$ (LGF) for increasing the cell efficiency on dye-sensitized Ti $O_2$ solar cells has been studied. The dye sensitized solar cell (DSC) consisting of mesoporous Ti $O_2$ electrode deposited on transparent substrate, an electrolyte containing I$^{[-10]}$ /I$_3$$^{[-10]}$ redox couple, and Pt counter electrode is a promising alternative to the inorganic solar cell. The structure of DSC is basically a sandwich type, viz., FTO glass/Ru-red dye-absorbed Ti $O_2$/iodine electrolyte/sputtered Pt/FTO glass. The cell without down converter had open circuit potential of approximately 0.66 Volt, the short circuit photocurrent density of 1.632 mA/$\textrm{cm}^2$, and fill factor of about 50 % at the excitation wavelength of 550 nm. In addition, 5.6 mW/$\textrm{cm}^2$ incident light intensity beam was used as a light source. From this result, the calculated monochromatic efficiency at the wavelength of 550 nm of this cell was about 9.62 %. The incident photon to current conversion efficiency (IPCE) of N3 used as a dye in this work is about 80 % at around 590 nm and 610 nm, which is the emission spectrum of Eu$^{3+}$ doped LGF, results in efficiency increasing of DSC.C.

Efficiency Improvement in Screen-printed Crystalline Silicon Solar Cell with Light Induced Plating (광유도도금을 이용한 스크린 프린팅 결정질 실리콘 태양전지의 효율 향상)

  • Jeong, Myeong Sang;Kang, Min Gu;Chang, Hyo Sik;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2013
  • Screen printing is commonly used to form the front/back electrodes in silicon solar cell. But it has caused high resistance and low aspect ratio, resulting in decreased conversion efficiency in solar cell. Recently the plating method has been combined with screen-printed c-Si solar cell to reduce the resistance and improve the aspect ratio. In this paper, we investigated the effect of light induced silver plating with screen-printed c-Si solar cells and compared their electrical properties. All wafers were textured, doped, and coated with anti-reflection layer. The metallization process was carried out with screen-printing, followed by co-fired. Then we performed light induced Ag plating by changing the plating time in the range of 20 sec~5min with/without external light. For comparison, we measured the light I-V characteristics and electrode width by optical microscope. During plating, silver ions fill the porous structure established in rapid silver particle sintering during co-firing step, which results in resistance decrease and efficiency improvement. The plating rate was increased in presence of light lamp, resulting in widening the electrode with and reducing the short-circuit current by shadowing loss. With the optimized plating condition, the conversion efficiency of solar cells was increased by 0.4% due to decreased series resistance. Finally we obtained the short-circuit current of 8.66 A, open-circuit voltage of 0.632 V, fill factor of 78.2%, and efficiency of 17.8% on a silicon solar cell.