• Title/Summary/Keyword: Open AI

Search Result 304, Processing Time 0.026 seconds

The impact of learners' gratitude disposition on computer thinking ability and digital efficacy in a Christian edu-tech program utilizing metaverse, generative AI, and Scratch based on a design thinking-based step-by-step process (디자인씽킹 기반 단계별 메타버스, 생성형 AI, 스크래치를 활용한 기독교 에듀테크 프로그램에서 학습자의 감사 성향이 컴퓨터 사고력과 디지털 효능감에 미치는 영향)

  • Su Yeon Kim;Bong ik Go;Eung gyo Seo
    • Journal of Christian Education in Korea
    • /
    • v.78
    • /
    • pp.231-262
    • /
    • 2024
  • This study aims to explore the impact of learners' gratitude tendencies on computer reasoning and digital efficacy in a Christian program utilizing metaverse, generative AI, and Scratch at each stage based on design thinking (Chapter I). The subjects of the study are learners who participated in a youth Christian program for two weeks on January 20th and 27th, 2024, consisting of 22 middle and high school students. Gratitude tendencies, computer reasoning, and digital efficacy were measured through post-program surveys, and simple regression analysis was conducted. Open-ended survey questions were used for learner perception analysis (Chapter II). The research results showed that learners' gratitude tendencies significantly influence computer reasoning. Additionally, learners' gratitude tendencies significantly affect confidence and familiarity among the sub-dimensions of digital efficacy, while not showing a significant impact on usefulness. The significance of this study lies in specifically exploring learners' experiential perceptions in metaverse, generative AI, and Scratch utilization in design thinking-based edutech programs in Christian education. It is hoped that the results.

Introducing SEABOT: Methodological Quests in Southeast Asian Studies

  • Keck, Stephen
    • SUVANNABHUMI
    • /
    • v.10 no.2
    • /
    • pp.181-213
    • /
    • 2018
  • How to study Southeast Asia (SEA)? The need to explore and identify methodologies for studying SEA are inherent in its multifaceted subject matter. At a minimum, the region's rich cultural diversity inhibits both the articulation of decisive defining characteristics and the training of scholars who can write with confidence beyond their specialisms. Consequently, the challenges of understanding the region remain and a consensus regarding the most effective approaches to studying its history, identity and future seem quite unlikely. Furthermore, "Area Studies" more generally, has proved to be a less attractive frame of reference for burgeoning scholarly trends. This paper will propose a new tool to help address these challenges. Even though the science of artificial intelligence (AI) is in its infancy, it has already yielded new approaches to many commercial, scientific and humanistic questions. At this point, AI has been used to produce news, generate better smart phones, deliver more entertainment choices, analyze earthquakes and write fiction. The time has come to explore the possibility that AI can be put at the service of the study of SEA. The paper intends to lay out what would be required to develop SEABOT. This instrument might exist as a robot on the web which might be called upon to make the study of SEA both broader and more comprehensive. The discussion will explore the financial resources, ownership and timeline needed to make SEABOT go from an idea to a reality. SEABOT would draw upon artificial neural networks (ANNs) to mine the region's "Big Data", while synthesizing the information to form new and useful perspectives on SEA. Overcoming significant language issues, applying multidisciplinary methods and drawing upon new yields of information should produce new questions and ways to conceptualize SEA. SEABOT could lead to findings which might not otherwise be achieved. SEABOT's work might well produce outcomes which could open up solutions to immediate regional problems, provide ASEAN planners with new resources and make it possible to eventually define and capitalize on SEA's "soft power". That is, new findings should provide the basis for ASEAN diplomats and policy-makers to develop new modalities of cultural diplomacy and improved governance. Last, SEABOT might also open up avenues to tell the SEA story in new distinctive ways. SEABOT is seen as a heuristic device to explore the results which this instrument might yield. More important the discussion will also raise the possibility that an AI-driven perspective on SEA may prove to be even more problematic than it is beneficial.

  • PDF

Primary Students' Mathematical Thinking Analysis of Between Abstraction of Concrete Materials and Concretization of Abstract Concepts (구체물의 추상화와 추상적 개념의 구체화에 나타나는 초등학생의 수학적 사고 분석)

  • Yim, Youngbin;Hong, Jin-Kon
    • School Mathematics
    • /
    • v.18 no.1
    • /
    • pp.159-173
    • /
    • 2016
  • In real educational field, there are cases that concrete problematic situations are introduced after abstract concepts are taught on the contrary to process that abstract from concrete contexts. In other words, there are cases that abstract knowledge has to be concreted. Freudenthal expresses this situation to antidogmatical inversion and indicates negative opinion. However, it is open to doubt that every class situation can proceed to abstract that begins from concrete situations or concrete materials. This study has done a comparative analysis in difference of mathematical thinking between a process that builds abstract context after being abstracted from concrete materials and that concretes abstract concepts to concrete situations and attempts to examine educational implication. For this, this study analyzed the mathematical thinking in the abstract process of concrete materials by manipulating AiC analysis tools. Based on the AiC analysis tools, this study analyzed mathematical thinking in the concrete process of abstract concept by using the way this researcher came up with. This study results that these two processes have opposite learning flow each other and significant mathematical thinking can be induced from concrete process of abstract knowledge as well as abstraction of concrete materials.

Artificial intelligence wearable platform that supports the life cycle of the visually impaired (시각장애인의 라이프 사이클을 지원하는 인공지능 웨어러블 플랫폼)

  • Park, Siwoong;Kim, Jeung Eun;Kang, Hyun Seo;Park, Hyoung Jun
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.20-28
    • /
    • 2020
  • In this paper, a voice, object, and optical character recognition platform including voice recognition-based smart wearable devices, smart devices, and web AI servers was proposed as an appropriate technology to help the visually impaired to live independently by learning the life cycle of the visually impaired in advance. The wearable device for the visually impaired was designed and manufactured with a reverse neckband structure to increase the convenience of wearing and the efficiency of object recognition. And the high-sensitivity small microphone and speaker attached to the wearable device was configured to support the voice recognition interface function consisting of the app of the smart device linked to the wearable device. From experimental results, the voice, object, and optical character recognition service used open source and Google APIs in the web AI server, and it was confirmed that the accuracy of voice, object and optical character recognition of the service platform achieved an average of 90% or more.

  • PDF

Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs

  • Kaan Orhan;Ceren Aktuna Belgin;David Manulis;Maria Golitsyna;Seval Bayrak;Secil Aksoy;Alex Sanders;Merve Onder;Matvey Ezhov;Mamat Shamshiev;Maxim Gusarev;Vladislav Shlenskii
    • Imaging Science in Dentistry
    • /
    • v.53 no.3
    • /
    • pp.199-207
    • /
    • 2023
  • Purpose: The objective of this study was to evaluate the accuracy and effectiveness of an artificial intelligence (AI) program in identifying dental conditions using panoramic radiographs(PRs), as well as to assess the appropriateness of its treatment recommendations. Materials and Methods: PRs from 100 patients(representing 4497 teeth) with known clinical examination findings were randomly selected from a university database. Three dentomaxillofacial radiologists and the Diagnocat AI software evaluated these PRs. The evaluations were focused on various dental conditions and treatments, including canal filling, caries, cast post and core, dental calculus, fillings, furcation lesions, implants, lack of interproximal tooth contact, open margins, overhangs, periapical lesions, periodontal bone loss, short fillings, voids in root fillings, overfillings, pontics, root fragments, impacted teeth, artificial crowns, missing teeth, and healthy teeth. Results: The AI demonstrated almost perfect agreement (exceeding 0.81) in most of the assessments when compared to the ground truth. The sensitivity was very high (above 0.8) for the evaluation of healthy teeth, artificial crowns, dental calculus, missing teeth, fillings, lack of interproximal contact, periodontal bone loss, and implants. However, the sensitivity was low for the assessment of caries, periapical lesions, pontic voids in the root canal, and overhangs. Conclusion: Despite the limitations of this study, the synthesized data suggest that AI-based decision support systems can serve as a valuable tool in detecting dental conditions, when used with PR for clinical dental applications.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Current trends in the Scada/EMS (Scada/EMS 기술동향 검토)

  • Yoon, Kap-Koo;Han, Young-Suk;Han, Seol-A
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.130-132
    • /
    • 1992
  • Many different industries use Supervisory Control and Data Acqisition/Energy Management Systems (Scada/EMS) to guide a wide range of operations and processes. This paper provides an overview of the functions of Scada/EMS and the fundamentals of operation of Scada/EMS. The paper concludes with the current trends toward open systems, distributed architecture, improved man-machine interface(MMl), advanced applications, artificial intelligence(AI), distribution automation, smarter remote terminal units(RTUs)and expended system scope.

  • PDF

A Uniform GTD and Aperture Integration Analysis of the Electromagnetic Scattering by a Semi-infinite Parallel Plate Waveguide with an Interior Termination and Lossy Inner Walls (Uniform GTD와 Aperture Integration을 이용한 내부에 Terminator가 있는 평면도파관의 전자기파의 산란)

  • Myung, N.H.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.105-109
    • /
    • 1987
  • A solution which combines ray and aperture integration(AI) techniques is presented for the problem of electromagnetic plane wave scattering by an open-ended, perfectly-conducting, semi-infinite parallel plate waveguide with a thin, uniform layer of lossy or absorbing material on its inner walls, and with a simple planar termination inside. Numerical results are given for the fields outside the waveguide.

  • PDF

Analysis of Copyright and Licensing Issues in Artificial Intelligence (인공지능에서 저작권과 라이선스 이슈 분석)

  • W.O. Ryoo;S.Y. Lee;S.I. Jung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.84-94
    • /
    • 2023
  • Open source has many advantages and is widely used in various fields. However, legal disputes regarding copyright and licensing of datasets and learning models have recently arisen in artificial intelligence developments. We examine how datasets affect artificial intelligence learning and services from the perspective of copyrighting and licensing when datasets are used for training models. The licensing conditions of datasets can lead to copyright infringement and license violation, thus determining the scope of disclosure and commercialization of the trained model. In addition, we examine related legal issues.

Bankruptcy Prediction with Explainable Artificial Intelligence for Early-Stage Business Models

  • Tuguldur Enkhtuya;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2023
  • Bankruptcy is a significant risk for start-up companies, but with the help of cutting-edge artificial intelligence technology, we can now predict bankruptcy with detailed explanations. In this paper, we implemented the Category Boosting algorithm following data cleaning and editing using OpenRefine. We further explained our model using the Shapash library, incorporating domain knowledge. By leveraging the 5C's credit domain knowledge, financial analysts in banks or investors can utilize the detailed results provided by our model to enhance their decision-making processes, even without extensive knowledge about AI. This empowers investors to identify potential bankruptcy risks in their business models, enabling them to make necessary improvements or reconsider their ventures before proceeding. As a result, our model serves as a "glass-box" model, allowing end-users to understand which specific financial indicators contribute to the prediction of bankruptcy. This transparency enhances trust and provides valuable insights for decision-makers in mitigating bankruptcy risks.